(i) −5,7 Solution: Here, the given roots are 5 and 7 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(−5)+7]x+(−5)7=0 ⇒x2−2x−35=0 |
(ii) −12,−3 Solution: Here, the given roots are −12 and −3 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(−12)+(−3)]x+(−12)(−3)=0 ⇒x2−(−72)x+32=0 ⇒x2+72x+32=0 ⇒2x2+7x+3=0 |
(iii) 1,−32 Solution: Here, the given roots are 1 and −32 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(1)+(−32)]x+(1)(−32)=0 ⇒x2−(−12)x−32=0 ⇒x2+12x−32=0 ⇒2x2+x−3=0 |
(iv) 1,−45 Solution: Here, the given roots are 1 and −45 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(1)+(−45)]x+(1)(−45)=0 ⇒x2−15x−45=0 ⇒x2−15x−45=0 ⇒5x2−x−4=0 |
(v) 12,−13 Solution: Here, the given roots are 12 and −13 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(12)+(−13)]x+(12)(−13)=0 ⇒x2−16x−16=0 ⇒x2−16x−16=0 ⇒6x2−x−1=0 |
(vi) 5i,−5i Solution: Here, the given roots are 5i and −5i ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(5i)+(−5i)]x+(5i)(−5i)=0 ⇒x2−0x−25i2=0 ⇒x2−0−25(−1)=0 ⇒x2+25=0 |
2. Form the quadratic equation whose one root is
(i) √3i Solution: Here, one root is √3i Therefore, other root will be −√3i ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(√3i)+(−√3i)]x+(√3i)(−√3i)=0 ⇒x2−[0]x+[√9i2]=0 ⇒x2−0+[−3(−1)]=0 ⇒x2+3=0 |
(ii) 4+√5 Solution: Here, one root is 4+√5 ⸫ The other root will be 4−√5 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(4+√5)+(4−√5)]x+[(4+√5)(4−√5)]=0 ⇒x2−[8]x+[(4)2−(√5)2]=0 ⇒x2−8x+[16−5]=0 ⇒x2−8x+11=0 |
(iii) 1(2+√3) Solution: Here, one root is 1(2+√3)=(2−√3)(2+√3)(2−√3) =(2−√3)(2)2−(√3)2=2−√34−3=2−√3 ⸫ The root will be 2+√3 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(2−√3)+(2+√3)]x+[(2−√3)(2+√3)]=0 ⇒x2−[4]x+[(2)2−(√3)2]=0 ⇒x2−4x+[4−3]=0 ⇒x2−4x+1=0 |
(iv) 1−√32i Solution: Here, one root is 1−√32i ⸫ The other root will be 1+√32i ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(1−√32i)+(1+√32i)]x+[(1−√32i)(1+√32i)]=0 ⇒x2−[2]x+[(1)2−(√32i)2]=0 ⇒x2−2x+[1−[34(−1)]]=0 ⇒x2−2x+[1+34]=0 ⇒x2−2x+74=0 ⇒4x2−8x+7=0 |
(v) −1−√52 Solution: Here, one root is −1−√52 ⸫ The other root will be −1+√52 ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 ⇒x2−[(−1−√52)+(−1+√52)]x+[(−1−√52)(−1+√52)]=0 ⇒x2−[−1−√5−1+√52]x+[(−1)2−(√5)24]=0 ⇒x2−[−22]x+[1−54]=0 ⇒x2−x+[−44]=0 ⇒x2−x−1=0 |
(vi) p+√p2−c Solution: Here, one root is p+√p2−c ⸫ The other root will be p−√p2−c ⸫ The required quadratic equation is, x2−(sum of the roots)x+(product of the roots)=0 x2−[(p+√p2−c)+(p−√p2−c)]x +[(p+√p2−c)(p−√p2−c)]=0 ⇒x2−[2p]x+[(p)2−(√p2−c)2]=0 ⇒x2−[2p]x+[p2−(p2−c)]=0 ⇒x2−2px+[p2−p2+c]=0 ⇒x2−2px+p2−p2+c=0 ⇒x2−2px+c=0 |
3. Find a quadratic equation whose roots are
(i) 2 less than the roots of x2−16x+63=0 Solution: Let α and β be the two roots of the given quadratic equation. Therefore, α+β=16 and αβ=63 Let the new roots be α−2 and β−2 ⸫ The required quadrartic equation is x2− (sum of the two new roots) x + (product of the two new roots) = 0 ⇒x2−[(α−2)+(β−2)]x+[(α−2)(β−2)]=0 ⇒x2−[(α+β)−4]x+[αβ−2α−2β+4]=0 ⇒x2−[16−4]x+[αβ−2(α+β)+4]=0 ⇒x2−12x+[63−2(16)+4]=0 ⇒x2−12x+[67−32]=0 ⇒x2−12x+35=0 (Ans.) |
(ii) Greater by 4 than the roots of the quadratic equation x2+13x+5=0 Solution: Let α and β be the two roots of the given quadratic equation. Therefore, α+β=−13 and αβ=5 Let the new roots be α+4 and β+4 ⸫ The required quadrartic equation is x2− (sum of the two new roots) x + (product of the two new roots) = 0 ⇒x2−[(α+4)+(β+4)]x+[(α+4)(β+4)]=0 ⇒x2−[(α+β)+8]x+[αβ+4α+4β+16]=0 ⇒x2−[(−13)+8]x+[αβ+4(α+β)+16]=0 ⇒x2−(−5)x+[5+4(−13)+16]=0 ⇒x2+5x+(21−52)=0 ⇒x2+5x−31=0 (Ans.) |
(iii) Reciprocals of the roots of 2x2−7x+6=0 Solution: Let α and β be the two roots of the given quadratic equation. α+β=72 and αβ=62=3 Let, the new roots be 1α and 1β as they are reciprocals of the roots of the given quadratic equation. ⸫ The required quadrartic equation is x2− (sum of the two new roots) x + (product of the two new roots) = 0 ⇒x2−(1α+1β)x+1α1β=0 ⇒x2−(β+ααβ)x+1αβ=0 ⇒x2−(723)x+13=0 ⇒x2−(76)x+13=0 ⇒6x2−7x+2=0 (Ans.) |
4. Find the value of k such that
(i) one root of 2x2−5x+k=0 is twice the other. Solution: Let α be the one root of the quadratic equation 2x2−5x+k=0 Then, the other root is 2α Now, Sum of the two roots, α+2α=−(−5)2 ⇒3α=52 ⇒α=56 ...(1) Also, Product of the two roots, α×2α=k2 ⇒2α2=k2 ⇒2(56)2=k2 [using (1)] ⇒2×2536=k2 ⇒2518=k2 ⇒k=259 |
(ii) (2k−5)x2−4x−15=0 and (3k−8)x2−5x−21=0 have a common root. Solution: Let α be the common roots of the given two quadratic equations, then (2k−5)α2−4α−15=0 .....(1) (3k−8)α2−5α−21=0 ......(2) On cross-multiplying we get, α2(−4)(−21)−(−15)(−5)=α(−15)(3k−8)−(2k−5)(−21)=1(2k−5)(−5)−(−4)(3k−8) ⇒ α284−75=α−45k+120+42k−105=1−10k+25+12k−32 ⇒ α29=α−3k+15=12k−7 Now, α29=α−3k+15⇒α=9−3k+15 ...(3) Again, α−3k+15=12k−7⇒α=−3k+152k−7 ...(4) Comparing (3) and (4), we get 9−3k+15=−3k+152k−7 ⇒ 9(2k−7)=(−3k+15)2 ⇒ 18k−63=9k2+225−90k ⇒ 0=9k2−90k−18k+225+63 ⇒ 9k2−108k+288=0 ⇒ 9(k2−12k+32)=0 ⇒ k2−12k+32=0 [⸪ 9≠0] ⇒ k2−8k−4k+32=0 ⇒ k(k−8)−4(k−8)=0 ⇒ (k−8)(k−4)=0 ⇒ k=8 or k=4 |
5. Under what condition
(i) 3x2+4mx+2=0 and 2x2+3x−2=0 will have a common root? Solution: Let α be the common roots between the given quadartic equations, then 3α2+4mα+2=0 and 2α2+3α−2=0 On cross-multiplying, we get α2−8m−6=α4−(−6)=19−8m =α2−8m−6=α4+6⇒α=−8m−610 =α4+6=19−8m⇒α=109−8m Comparing these two equations, we get −8m−610=109−8m ⇒−72m+64m2−54+48m=100 ⇒64m2−24m−154=0 ⇒2(32m2−12m−77)=0 ⇒32m2−12m−77=0 ⇒32m2−56m+44m−77=0 ⇒8m(4m−7)+11(4m−7)=0 ⇒(4m−7)(8m+11)=0 Either 4m−7=0⇒m=74 Or 8m+11=0⇒m=−118 ⸫ The required condition for the given quadratic equations to have a common root is m=74,m=−118 |
(ii) one root of ax2+bx+c=0 will be n times the other? Solution: Let α be one of the roots of the quadratic equation ax2+bx+c=0 and so the other root be nα From the relation between roots and coefficients, we have, α+nα=−ba ⇒ α(1+n)=−ba ⇒ α=−ba(1+n) ...(1) Again, n(nα)=ca ⇒ nα2=ca ⇒ α2=cna ⇒ [−ba(1+n)]2=cna [using (1)] ⇒ b2a2(1+n)2=cna ⇒ b2ac=(1+n)2n |
(iii) one root of x2−px+q=0 will be twice the other. Solution: Let α and 2α be the roots of the quadratic equation x2−px+q=0. From the relation between roots and coefficients, we have, α+2α=−(−p) ⇒ 3α=p ⇒ α=p3 ...(1) Again, α×2α=q ⇒ 2α2=q ⇒ α2=q2 ⇒ [p3]2=q2 [using (1)] ⇒ p29=q2 ⇒ p2q=92 |
(iv) The roots of ax2+bx+c=0 will be in the ratio m:n? Solution: Let α be the common ratio between the roots of the quadratic equation ax2+bx+c=0. So, the roots of the quadratic equation becomes mα and nα. From the relation between roots and coefficients, we have, mα+nα−ba ⇒ α(m+n)=−ba ⇒ α=−ba(m+n) ...(1) Again, mα×nα=ca ⇒ mnα2=ca ⇒ mn[−ba(m+n)]2=ca [using (1)] ⇒ mn[b2a2(m+n)2]=ca ⇒ mnb2=ac(m+n)2 |
(v) ax2+bx+c=0 and px2+qx+r=0 will have a common root? Solution: Let us consider two quadratic equations ax2+bx+c=0...(1) and px2+qx+r=0 ...(2) Let α be the common roots of the two quadratic equations, then aα2+bα+c=0...(3) and pα2+qα+r=0 ...(4) On cross-multiplying, we get α2br−qc=αcp−ar=1aq−bp Now, α2br−qc=αcp−ar ⇒α=br−qccp−ar...(5) Also, αcp−ar=1aq−bp ⇒α=cp−araq−bp...(6) Comparing (5) & (6), we get br−qccp−ar=cp−araq−bp ⇒(cp−ar)2=(br−qc)(aq−bp) This is the required condition for two quadratic equations to have one common root. |
(vi) One root of ax2+bx+c=0 is four times the other? Solution: Let α and 4α be the roots of the quadratic equation ax2+bx+c=0. From the relation between roots and coefficients, we have, α+4α−ba ⇒ 5α=−ba ⇒ α=−b5a ...(1) Again, mα×4α=ca ⇒ 4α2=ca ⇒ 4[−b5a]2=ca [using (1)] ⇒ 4[b225a2]=ca ⇒ 4b2=25ac |
(vii) the sum of the roots of x2−mx+n=0 is k times their difference? Solution: Let α and β be the roots of the quadratic equation x2−mx+n=0. From the relation between roots and coefficients, we have, α+β=−(−m)=m Again, αβ=n According to question, α+β=k(α−β) ⇒ (α+β)2=k2(α−β)2 [squaring both sides] ⇒ (α+β)2=k2[(α+β)2−4αβ] ⇒ (α+β)2=k2(α+β)2−4k2αβ ⇒ 4k2αβ=k2(α+β)2−(α+β)2 ⇒ 4k2αβ=(α+β)2(k2−1) ⇒ 4k2n=m2(k2−1) |
6. If α and β are the roots of ax2+bx+c=0 then express the value of the following symmetric function in terms of the co-efficients a,b,c.
(i) α2+αβ+β2
(ii) (α+2β)(2α+β)
(iii) α4+α2β2+β4
(iv) α2β+β2α
Solution:
Since α and β are the roots of the quadratic equation ax2+bx+c=0
So, α+β=−ba and αβ=ca
(i) α2+αβ+β2=α2+β2+αβ
=(α+β)2−2αβ+αβ
=(α+β)2−αβ
=b2a2−ca
=b2−aca2
(ii) (α+2β)(2α+β)=2α2+αβ+4αβ+2β2
=2(α2+β2)+5αβ
=2[(α+β)2−2αβ]+5αβ
=2(α+β)2+αβ
=2b2a2+ca
=2b2+aca2
(iii) α4+α2β2+β4=(α2)2+(β2)2+(αβ)2
=(α2+β2)2−2α2β2+(αβ)2
=[(α2+β2)2−2α2β2]+(αβ)2
=(α2+β2)2−α2β2
=[(α+β)2−2αβ]2−(αβ)2
=[(−ba)2−2ca]2−c2a2
=(b2a2−2ca)2−c2a2
=(b2−2ac)2a4−c2a2
=(b2−2ac)2−c2a2a4
=b4−4ab2c+4a2c2−a2c2a4
=b4−4ab2c+3a2c2a4
(iv) α2β+β2α=α3+β3αβ
=(α+β)3−3αβ(α+β)αβ
=(−ba)3−3ca(−ba)ca
=−b3a3+3bca2ca
=−b3+3abca3ca
=−b3+3abca2c
7. If α and β are the two roots of the quadratic equation ax2+bx+c=0 then find the quadratic equations having the following pairs of roots.
(i) αβ,βα
(ii) 1α2,1β2
(iii) α4,β4
(iv) √αβ,√βα
(v) α2+β2,1α2+1β2
(vi) 1α+β,1α+1β
(vii) (α−β)2,(α+β)2
(viii) α+2α,β+2α
(ix) α3β,β3α
(x) α2+αβ+β2,α2−αβ+β2
Solution:
⸪ α and β are the two roots of the quadratic equation ax2+bx+c=0
⸫ α+β =−ba and αβ=ca
Now,
(i) Here the sum of the roots,
αβ+βα=α2+β2αβ
=[α+β]2−2αβαβ
=b2a2−2caca
=b2−2aca2ca
=b2−2aca2×ac
=b2−2acac
and the product of the roots,
αββα=1
⸫ The required quadratic equation is
x2−(αβ+β)α)x+αββα=0
⇒x2−(b2−2acac)x+1=0
⇒acx2−(b2−2ac)x+ac=0
(ii) Here the sum of the roots,
1α2+1β2=β2+α2α2β2
=(α+β)2−2αβ(αβ)2
=(−ba)2−2ca(ca)2
=b2a2−2cac2a2
=b2−2aca2c2a2
=b2−2aca2×a2c2
=b2−2acc2
and the product of the roots,
1α2×1β2=1(αβ)2
=1[ca]2=1c2a2=a2c2
⸫ The required quadratic equation is
x2−[b2−2acc2]x+a2c2=0
⇒c2x2−(b2−2ac)x+a2=0
(iii) Here the sum of the roots,
α4+β4=(α2)2+(β2)2
=(α2+β2)2−2α2β2
=(α2+β2)2−2α2β2
=[(α+β)2−2αβ]2−2(αβ)2
=[(−ba)2−2ca]2−2[ca]2
=(b2a2−2ca)2−2c2a2
=[b2−2aca2]2−2c2a2
=(b2−2ac)2a4−2c2a2
=(b2−2ac)2−2a2c2a4
=(b2)2+(2ac)2−2(b2)(2ac)−2a2c2a4
=b4++4a2c2−4ab2c−2a2c2a4
=b4+2a2c2−4ab2ca4
and the product of the roots,
α4β4=(αβ)4
=[ca]4=c4a4
⸫ The required quadratic equation is
x2−[b4+2a2c2−4ab2ca4]x+c4a4=0
⇒a4x2−(b4−4ab2c+2a2c2)x+c4=0
(iv) Here the sum of the roots,
√αβ+√βα=√α√β+√β√α
=α+β√αβ
=−ba√ca
=−ba×√ac
=−ba×√a√c
=−b√a√a×√a√c
=−b√a×√c
=−b√ac
and the product of the roots,
√αβ×√βα=√α√β×√β√α=1
⸫ The required quadratic equation is
x2−[−b√ac]x+1=0
⇒x2+b√acx+1=0
⇒√acx2+bx+√ac=0
(v) Here the sum of the roots,
(α2+β2)+(1α2+1β2)=(α2+β2)+(α2+β2α2β2)
=(α2+β2)(1+1α2β2)
=[(α)+β)2−2αβ][1+1(αβ)2]
=[(−ba)2−2(ca)][1+1(ca)2]
=(b2a2−2ca)(1+a2c2)
=(b2−2aca2)(c2+a2c2)
=(b2−2ac)(a2+c2)a2c2
and the product of the roots,
(α2+β2×(1α2+1β2)=(α2+β2)×(α2+β2α2β2)
=(α2+β)2α2β2
=[(α+β)2−2αβ]2(αβ)2
=[(−ba)2−2(ca)]2(ca)2
=(b2a2−2ca)2c2a2
=(b2−2aca2)2c2a2
=(b2−2aca2)2×a2c2
=(b2−2ac)2a4×a2c2
=(b2−2ac)2a2c2
⸫ The required quadratic equation is
x2−[(b2−2ac)(a2+c2)a2c2]x+(b2−2ac)2a2c2=0
⇒ac2x2−(b2−2ac)(a2+c2)x+(b2−2ac)2=0
(vi) Here the sum of the roots,
1α+β+(1α+1β)=1α+β+β+ααβ
=1−ba+−baca
=−ab+(−ba)×ac
=−ab−bc=−(ab+bc)
=−(ac+b2bc)
and the product of the roots,
1α+β(1α+1β)=1α+β(β+ααβ)
=1αβ=1ca=ac
⸫ The required quadratic equation is
x2−[−(ac+b2bc)]x+ac=0
⇒bcx2+(ac+b2)x+ab=0
(vii) Here the sum of the roots,
(α−β)2+(α+β)2=2(α2+β2)
=2[(α+β)2−2αβ]
=2[(−ba)2−2(ca)]
=2[b2a2−2ca]=2(b2−2aca2)
and the product of the roots,
(α−β)2×(α+β)2=[(α+β)2−4αβ]×(α+β)2
=[(−ba)2−4(ca)][−ba]
=[b2a2−4ca][b2a2]
=(b2−4aca2)(b2a2)=b2(b2−4ac)a4
⸫ The required quadratic equation is
x2−[2(b2−2aca2)]x+b2(b2−4ac)a4=0
⇒a4x2−2a2(b2−2ac)x+b2(b2−4ac)=0
(viii) Here the sum of the roots,
(α+2α)+(β+2α)=α+2α+β+2α
=3(α+β)=3(−ba)=−3ba
and the product of the roots,
(α+2α)(β+2α)=αβ+2α2+2β2+4αβ
=2(α2+β2)+5αβ
=2[(α+β)2−2αβ]+5αβ
=2(α+β)2−4αβ+5αβ=2(α+β)2+αβ
=2(−ba)2+ca=2b2a2+ca=2b2+aca2
⸫ The required quadratic equation is
x2−(−3ba)x+2b2+aca2=0
⇒a2x2+3abx+2b2+ac=0
(ix) Here the sum of the roots,
α3β+β3α=α4+β4αβ
=(α2)2+(β2)2αβ=(α2+β2)2−2α2β2αβ
=[(α+β)2−2αβ]2−2(αβ)2αβ
=[(−ba)2−2(ca)]2−2(ca)2ca
=[b2a2−2ca]2−2c2a2ca
=[b2−2aca2]2−2c2a2ca
=b4+4a2c2−4ab2ca4−2c2a2ca
=b4+4a2c2−4ab2c−2a2c2a4×ca
=b4+2a2c2+4ab2ca3c
and the product of the roots,
α3ββ3α=α2β2=(αβ)2
=(ca)2=c2a2
⸫ The required quadratic equation is
x2−(b4+2a2c2+4ab2ca3c)x+(ca)2+c2a2
⇒a3cx2−(b4+2a2c2−4ab2c)x+ac3=0
(x) Here the sum of the roots,
α2+αβ+β2+α2−αβ+β2=2(α2+β2)
=2[(α+β)2−2αβ]
=2[(−ba)2−2ca]
=2[b2a2−2ca]
=2(b2−2aca2)=2b2−4aca2
and the product of the roots,
(α2+αβ+β2)(α2−αβ+β2)
=(α2+β2+αβ)(α2+β2−αβ)
=(α+β)2−(αβ)2
=[(α+β)2−2αβ]2−(αβ)2
=[(−ba)2−2(ca)]2−(ca)2
=[b2a2−2ca]2−c2a2
=(b2−2aca2)2−c2a2
=b4+4a2c2−4ab2ca4−c2a2
=b4+4a2c2−4ab2c−a2c2a4
=b4+3a2c2−4ab2ca4
⸫ The required quadratic equation is
x2−(2b2−4aca2)x+b4+3a2c2−4ab2ca4=0
⇒a4x2−(2a2b2−4a3c)x+(b4+3a2c2−4ab2c)=0
8. If a2=5a−3 and b2=5b−3 (a≠b), then find the quadratic equation whose roots are ab and ba.
Solution:
Here, a2=5a−3⇒a2−5a+3=0
and b2=5a−3⇒b2−5a+3=0
⸫x2−5x+3=0 is the two quadratic equation whose roots are a and b
⸫a+b=5 and ab=3
Now, ab+ba=a2+b2ab=(a+b)2−2abab
=52−2(3)3=193
Also, abba=1
⸫ The required quadratic equation having the roots ab and ba is, x2−(193)x+1=0⇒3x2−19x+3=0
9. If p and q are the roots of 3x2+6x+2=0, then find the quadratic equation having the roots −p2q,−q2p
Solution:
Given, p and q are the roots of 3x2+6x+2=0
⸫ p+q=−63=−2 and ab=23
Now, (−p2q)+(−q2p)=−p3−q3pq
=−(p3+q3)pq=−[(p+q)3−3pq(p+q)]pq
=−[(−2)3−3(23)(−2)]23
=−(−8+4)23=4×32=6
Also, (−p2q)×(−q2p)=pq=23
⸫ The required quadratic equation having the roots −p2q,−q2p is, x2−6x+23=0⇒3x2−18x+2=0
10. If 4 is a root of x2+ax+8=0 and the roots of x2+ax+b=0 are equal, then find the value of b.
Solution:
⸪ 4 is a root of the quadratic equations x2+ax+8=0
⸫ (4)2+4a+8=0
⇒16+4a+8=0
⇒4a=−24
⇒a=−6 ...(1)
⸪ The quadratic equation x2+ax+b=0 is having same roots.
⸫ b2−4ac=0
⸫ a2−4(1)(b)=0
⇒(−6)2−4b=0 [using (1)]
⇒36−4b=0
⇒−4b=−36
⇒b=9
11. If α be one root of 4x2+2x−1=0, then show that the other root is 4α3−3α
Solution:
⸪ α is one root of the quadratic equation 4x2+2x−1=0
⸫ 4α2+2x−1−0⇒4α2=1−2α ...(1)
⇒α2=1−2α4 ...(2)
Also, we have 4α3−3α as the other root of the given quadratic equation. Let us now reduce its degree,
4α3−3α=4α2.α−3α
=α(1−2α)−3α [using (1)]
=α−2α2−3α
=−2α2−2α
=−2(1−2α4)−2α [using (2)]
=−12+α−2α
=−α−12
⇒4α3−3α=−(α+12)
Now, we will see if the reduced value of the root other than α satisfies the given quadratic equation,
LHS= 4[−(α+12)]2+2[−(α+12)]−1
=4(α2+α+14)+2α−1−1
=4α2+1+4α−2α−2
=1−2α+1+4α−2α−2 [using (1)]
=0 = RHS
⸫ When α is one root of 4x2+2x−1=0 then the other root is 4α3−3α
Hence shown.
12. If the difference of the two roots of x2+px+q=0 is 1, then show that p2+4q2=(1+2q)2
Solution:
⸪ The difference between the two roots of the given quadratic equation is 1, let us consider α and α−1 are the roots of the quadratic equation x2+px+q=0
⸫ α+α−1=−p
⇒2α−1=−p⇒α=1−p2 ...(1)
Also, α(α−1)=q
⇒(1−p2)(1−p2−1)=q [using (1)]
⇒(1−p2)(1−p−22)=q
⇒[(1−p)2][(−1−p)2]=q
⇒−(1−p)2(1+p)2=q
⇒−1+p24=q
⇒p2−1=4q
⇒p2=4q+1...(2)
Now, LHS = p2+4q2=(4q+1)+4q2 [using (2)]
=1+4q+4q2=(1+2q)2= RHS
Hence shown.
13. If ax2+bx+c=0 and bx2+cx+a=0 have a common root, then prove that a+b+c=0 or a=b=c .
Solution:
Let α be the common roots of the two given quadratic equations.
⸫ aα2+bα+c=0 ...(1)
bα2+cα+a=0 ...(2)
On cross-multiplying, we get,
α2ab−c2=αbc−a2=1ac−b2
⸫ α2ab−c2=αbc−a2⇒α=ab−c2bc−a2 ...(3)
Also, αbc−a2=aac−b2⇒α=bc−a2ac−b2 ...(4)
Comparing (3) & (4), we get
ab−c2bc−a2=bc−a2ac−b2
⇒(ab−c2)(ac−b2)=(bc−a2)2
⇒a2bc−ab3−ac3+b2c2=b2c2+a4−2a2bc
⇒a2bc+2a2bc−ab3−ac3−a4=0
⇒−a4−ab3−ac3+3a2bc=0
⇒−a(a3+b3+c3−3abc)=0
⇒a3+b3+c3−3abc=0[⸪−a≠0]
⇒12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0
⇒(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0 [⸪ 12≠0]
⸫ Either a+b+c = 0
or (a−b)2+(b−c)2+(c−a)2=0
Now, for the second case, since the sum of three positive term is zero, so, each term must be equal to zero. Therefore,
(a−b)2=0⇒a−b=0⇒a=b
(b−c)2=0⇒b−c=0⇒b=c
(c−a)2=0⇒c−a=0⇒c=a
⸫ a=b=c
Hence proved.
14. If the two roots of ax2+bx+a=0 are equal, then show that a2+b2a2−b2=−53
Solution:
⸪ The two roots of ax2+bx+a=0 are equal,
⸫ b2−4ac=0
⇒b2−4a2=0 [⸪ c=a]
⇒b2=4a2 ...(1)
Now, a2+b2a2−b2=a2+4a2a2−4a2 [using (1)]
=5a2−3a2
⇒a2+b2a2−b2=−53
Hence shown.
15. Solve
(i) x4−13x2+36=0...(1)
Let x2=y
⸫ (1) ⇒y2−13y+36=0
⇒y2−(9+4)y+36=0
⇒y2−9y−4y+36=0
⇒y(y−9)−4(y−9)=0
⇒(y−9)(y−4)=0
Either y=9
⇒x2=9
⇒x=±3
or y=4
⇒x2=4
⇒x=±2
⸫ The required roots are 3, -3, 2 and -2
(ii) x4−3x2+2=0...(1)
Let x2=y
⸫ (1) ⇒y2−3y+2=0
⇒y2−(2+1)y+2=0
⇒y2−2y−y+2=0
⇒y(y−2)−1(y−2)=0
⇒(y−2)(y−1)=0
Either y=2⇒x2=2
⇒x=±√2
or y=1⇒x2=1
⇒x=±1
⸫ The required roots are √2,−√2,1 and −1
(iii) (x2−3x)2−5(x2−3x)+6=0...(1)
Let x3−3x=y
⸫ (1) ⇒ y2−5y+6=0
⇒y2−(2+3)y+6=0
⇒y2−2y−3y+6=0
⇒y(y−2)−3(y−2)=0
⇒(y−2)(y−3)=0
Either y−2=0
⇒x2−3x−2=0
⇒x=−(−3)±√(−3)2−4(1)(−2)2(1)
⇒x=3±√9+82
⇒x=3±√172
or y−3=0
⇒x2−3x−3=0
⇒x=−(−3)±√(−3)2−4(1)(−3)2(1)
⇒x=3±√9+122
⇒x=3±√212
⸫ The required roots are 3±√172,3±√212
(iv) (x2+2x−3)2−3(x2+2x−1)+8=0....(1)
Let x2+2x−1=y
⸫ (1) ⇒ (y−2)2−3y+8=0
⇒y2−2(y)(2)+4−3y+8=0
⇒y2−4y−3y+8=0
⇒y2−7y+12=0
⇒y2−(4+3)y+12=0
⇒y2−4y−3y+12=0
⇒y(y−4)−3(y−4)=0
⇒(y−4)(y−3)=0
Either y−4=0
⇒x2+2x−1−4=0
⇒x2+2x−5=0
⇒x=−(2)±√(2)2−4(1)(−5)2(1)
⇒x=−2±√4+202
⇒x=−2±√242
⇒x=−2±2√62
or y−3=0
⇒x2+2x−1−3=0
⇒x2+2x−4=0
⇒x=−(2)±√(2)2−4(1)(−4)2(1)
⇒x=−2±√4+162
⇒x=−2±√202
⇒x=−2±2√52
⸫ The required roots are −2±2√62,−2±2√52
(v) x2−5x+10=5√x2−5x+4...(1)
Let y=x2−5x+4
⸫ (1) ⇒ (y+6)=5√y
⇒(y+6)2=(5√y)2
⇒y2+2(y)(6)+62=52y
⇒y2+12y+36=25y
⇒y2−13y+36=0
⇒y2−9y−4y+36=0
⇒y(y−9)−4(y−9)=0
⇒(y−9)(y−4)=0
Either y−9=4
⇒x2−5x+4−9=0
⇒x2−5x−5=0
⇒x=−(−5)±√(−5)2−4(1)(−5)2(1)
⇒x=5±√25+202
⇒x=5±√452
⇒x=5±3√52
or y−4=0
⇒x2−5x+4−4=0
⇒x2−5x=0
⇒x(x−5)=0
⇒x=0
or x=5
⸫ The required roots are 0, 5 and 5±3√52
Alternative Solution:
x2−5x+10=5√x2−5x+4
⇒x2−5x+10−5√x2−5x+4=0...(1)
Let y=√x2−5x+4
⸫ (1) ⇒ y2=x2−5x+4
⇒y2−4=x2−5x
(1)⇒y2−4+10−5y=0
⇒y2−5y+6=0
⇒y2−2y−3y+6=0
⇒y(y−2)−3(y−2)=0
⇒(y−2)(y−3)=0
Either y2=9
⇒x2−5x+4=9
⇒x2−5x−5=0
⇒x=−(−5)±√(−5)2−4(1)(−5)2(1)
⇒x=5±√25+202
⇒x=5±√452
⇒x=5±3√52
or y2=4
⇒x2−5x−4=4
⇒x2−5x=0
⇒x(x−5)=0
⇒x=0 or x=5
⸫ The required roots are 0, 5 and 5±3√52
(vi) √x2+5x−2+√x2+5x−3...(1)
Let x2+5x−2=y
⸫ (1) ⇒ √y+√y−3=3
⇒√y=3−√y−3
⇒(√y)2=(3−√y−3)2
⇒y=32−2(3)(√y−3)+(√y−3)2
⇒y=9−6√y−3+y−3
⇒−6=−6√y−3
⇒1=√y−3
⇒1=y−3
⇒y=4
⇒x2+5x−2=4
⇒x2+5x−6=0
⇒x2+(6−1)x−6=0
⇒x2+6x−x−6=0
⇒x(x+6)−1(x+6)=0
⇒(x+6)(x−1)=0
Either x+6=0
⇒x=−6
or x−1=0
⇒x=1
⸫ The required roots are -6 and 1
(vii) √x1−x+√1−xx=136...(1)
Let y=√x1−x⇒1y=√1−xx
⸫ (1) ⇒ y+1y=136
⇒y2+1y=136
⇒6y2+6=13y
⇒6y2−13y+6=0
⇒6y2−(9+4)y+6=0
⇒6y2−9y−4y+6=0
⇒3y(2y−3)−2(2y−3)=0
⇒(2y−3)(3y−2)
Either 2y−3=0⇒y=32
⇒√x1−x=32
⇒(√x1−x)2=(32)2
⇒x1−x=94⇒4x=9−9x
⇒13x=9⇒x=913
or 3y−3=0⇒y=23
⇒√x1−x=23
⇒(√x1−x)2=(23)2
⇒x1−x=49
⇒9x=4−4x
⇒13x=4
⇒x=413
⸫ The required solutions are 913 and 413
(viii) (x2+1x2)−5(x+1x)=4
⇒x2+2(x)(1x)+(1x)2−5(x+1x)−2=4
⇒(x+1x)2−5(x+1x)−6=0....(1)
Let x+1x=y
⸫ (1) ⇒ y2−5y−6=0
⇒y2−(6−1)y−6=0
⇒y2−6y+y−6=0
⇒y(y−6)+1(y−6)
⇒(y−6)(y+1)
Either y−6=0
⇒y=6
⇒x+1x=6
⇒x2+1x=6
⇒x2−6x+1=0
⸫ x=−(−6)±√62−4(1)(1)2(1)
=6±√36−42=6±4√22
=2(3±2√2)2=3±2√2
or y+1=0
⇒x+1x+1=0
⇒x2+1+xx=0
⇒x2+x+1=0
⸫ x=−1±√12−4(1)(1)2(1)
=−1±√−32=−1±√3i2
⸫ The required solutions are 3±2√2 and −1±√3i2
(ix) (x−1)(x−2)(x−3)(x−4)=120 ⇒[(x−1)(x−4)][(x−2)(x−3)]=120 [⸪ -1-4=-2-3] ⇒(x2−4x−x+4)(x2−3x−2x+6)=120 ⇒(x2−5x+4)(x2−5x+6)=120 Let x2−5x=y ⸫ (1) ⇒ (y+4)(y+6)=120 ⇒y2+6y+4y+36=120 ⇒y2+10y−96=0 ⇒y2+(16−6)y−96=0 ⇒Y2+16y−6y−96=0 ⇒y(y+16)−6(y+16)=0 ⇒(y+16)(y−6)=0 Either y+16=0 ⇒x2−5x+16=0 ⇒x=−(−5)±√(−5)2−4.1.162.1 =5±√−392=5±√39i2 or y−6=0 ⇒x2−5x−6=0 ⇒x2−6x+x−6=0 ⇒x(x−6)+1(x−6) ⇒(x+1)(x−6)=0 ⇒x=6,−1 ⸫ The required solutions are 6, −1 and 5±√39i2 |
(x) (x+1)(x+3)(x+5)(x+7)=20
⇒(x+1)(x+7)(x+3)(x+5)=20
⇒(x2+7x+x+7)(x2+5x+3x+15)=20
⇒(x2+8x+7)(x2+8x+15)=20...(1)
Let x2+8x=y
⸫ (1) ⇒ (y+7)(y+15)=20
⇒y2+15y+7y+105=20
⇒y2+22y+85=0
⇒y2+17y+5y+85=0
⇒y(y+17)+5(y+17)=0
⇒(y+17)(y+5)=0
Either y+17=0
⇒x2+8x+17=0
⇒x=−8±√82−4.172
=−8±√64−682
=−8±√−42
=−8±2i2
=2(−4±i)2
=−4±i
or y+5=0
⇒x2+8x+5=0
⇒x=−8±√82−4.52
=−8±√64−202
=−8±√442
=−8±2√112
=2(−4±√11)2
=−4±√11
⸫ The required solutions are −4±i and −4±√11
(xi) 1x−2+1x+5=1x−6
⇒x+5+x−2(x−2)(x+5)=1x−6
⇒2x+3x2+5x−2x−10=1x−6
⇒2x+3x2+3x−10=1x−6
⇒2x2−12x+3x−18=x2+3x−10
⇒x2−12x−8=0
⇒x=12±√122−4(−8)2
=12±√144+322
=12±√1762
=12±4√112
=2(6±2√11)2
=6±2√11
⸫ The required solutions are 6±2√11
(xii) 5x2+6x+8=1x2+6x+5+4x2+6x+9 .....(1)
Let x62=6x=y
⸫ (1) ⇒ 5y+8=1y+5+4y+9
⇒4y+8+1y+8=1y+5+4y+9
⇒4y+8−4y+9=1y+5−1y+8
⇒4(1y+8−1y+9)=y+8−y−5(y+5)(y+8)
⇒4(y+8−y−8(y+8)(y+9))=3(y+5)(y+8)
⇒4(1(y+8)(y+9))=3(y+5)(y+8)
⇒4(y+5)(y+8)=3(y+8)(y+9)
⇒4(y+5)(y+8)−3(y+8)(y+9)
⇒(y+8)[4(y+5)−3(y+9)]=0
⇒(y+8)[4y+20−3y−27]=0
⇒(y+8)(y−7)=0
Either y+8=0
⇒x2+6x+8=0
⇒x2+2x+4x+8=0
⇒x(x+2)+4(x+2)=0
⇒x=−2 or −4
or y−7=0
⇒x2+6−7=0
⇒x2+7x−x−7=0
⇒x(x+7)−1(x+7)=0
⇒x=1
or −7
⸫ The required solutions are 1,−2,−4 and −7
(xiii) x2−52x−3−3x26x+1=32 ⇒x2−52x−3=32+3x26x+1 ⇒x2−52x−3=3(6x+1)+6x22(6x+1) ⇒x2−52x−3=18x+3+6x212x+2 ⇒12x3+2x2−60x−10=36x2+6x+12x3−54x−9−18x2 ⇒2x2+18x2−36x2−60x+54x−6x+9−10=0 ⇒−16x2−12x−1=0 ⇒16x2+12x+1=0 ⇒x=−12±√122−4.162.16 =−12±√144−6432 =−12±√8032 =−12±4√532 =4(−3±√5)32 =−3±√58 ⸫ The required solutions are −3±√58 |
(xiv) √2x−1+√3x−2=√4x−3+√5x−4 ⇒√2x−1−√5x−4=√4x−3−√3x−2 ⇒(√2x−1−√5x−4)2=(√4x−3−√3x−2)2=4x−3+3x−2−2(√4x−3)(√3x−2) ⇒7x−5−2(√2x−1)(√5x−4)=7x−5−2(√4x−3)(√3x−2) ⇒ \sqrt{2x-1}.\sqrt{5x-4}=\sqrt{4x-3}.\sqrt{3x-2} ⇒ (\sqrt{2x-1}.\sqrt{5x-4})^2=(\sqrt{4x-3}.\sqrt{3x-2})^2 ⇒ (2x-1)(5x-4)=(4x-3)(3x-2) ⇒ 10x^2-8x-5x+4=12x^2-8x-9x+6 ⇒ -2x^2+4x-2=0 ⇒ x^2-2x+1=0 ⇒ (x-1)^2 =0 ⇒ x=1, 1 ⸫ The required solutions are 1 and 1 |
(xv) \sqrt{x^2-4}+\sqrt{x^2+5x+6}=\sqrt{3x^2+13x+14} ⇒ \sqrt{(x+2)(x-2)}+\sqrt{(x+2){x+3}}-{\sqrt{x+2}(3x+7)} = 0 ⇒ \sqrt{x+2}(\sqrt{x-2}+\sqrt{x+3}-\sqrt{3x+7}) = 0 Either \sqrt{x+2} = 0 ⇒ x+2 = 0 ⇒ x = -2 or \sqrt{x-2}+\sqrt{x+3}-\sqrt{3x+7} = 0 ⇒ \sqrt{x-2}+\sqrt{x+3}=\sqrt{3x+7} ⇒ (\sqrt{x-2}+\sqrt{x+3})^2=(\sqrt{3x+7})^2 ⇒ (\sqrt{x-2})^2+(\sqrt{x+3})^2+2.\sqrt{x-2}.\sqrt{x+3}=3x+7 ⇒ x-2+x+3+2.\sqrt{(x-2)(x+3)}=3x+7 ⇒ 2.\sqrt{(x-2)(x+3)} = x+6 ⇒ (2.\sqrt{(x^2+x-6})^2 = (x+6)^2 ⇒ 4(x^2+x-6) = x^2+36+12x ⇒ 4x^2+4x-24-x^2-12x-36=0 ⇒ 3x^2-8x-60=0 ⇒ 3x^2-18x+10x-60=0 ⇒ 3x(x-6)+10(x-6) = 0 ⇒ (x-6)(x+10) = 0 Either x = 6 or x = -\frac{10}{3} [Unacceptable] ⸫ The required solutions are -2 and 6 |
(xvi) 3^{x+3}+3^x-3^{2x+1} = 9
⇒ 3^x.3^3+3^x-3^x.3 =9
⇒ 27.3^x+3^x-3.3^{2x} = 9....(1)
Let 3^x = y
⸫ (1) ⇒ 27y+y-3y^2 = 9
⇒ -3y^2+28y-9 = 0
⇒ 3y^2-28y+9 = 0
⇒ 3y^2-(1+27)y+9 = 0
⇒ 3y^2-y-27y+9 = 0
⇒ y(3y-1)-9(3y-1)
⇒ (y-9)(3y-1)
Either y-9 = 0
⇒ 3^x=9=3^2
⇒ x = 2
or 3y-1 = 0
⇒ y =\frac{1}{3}
⇒ 3^x = 3^{-1}
⇒ x = -1
⸫ The required solutions are 2 and -1
(xvii) 4^x-3.2^{x+2}+32 = 0
⇒ (2)^{2x}-3.2^x.2^2+32 = 0
⇒ 2^{2x}+12.2^{2x}+32 = 0...(1)
Let 2^x = y
⸫ (1) ⇒ y^2-12y+32 = 0
⇒ y^2-4y-8y+32 = 0
⇒ y(y-4)-8(y-4) = 0
⇒ (y-4)(y-8) = 0
Either y-4 = 0
⇒ y = 4
⇒ 2^x = 4
⇒ 2^x = 2^2
⇒ x = 2
or y-8 = 0
⇒ y = 8
⇒ 2^x = 2^3
⇒ x = 3
⸫ The required solutions are 2 and 3
(xviii) x^{\frac{2}{3}}-x^{\frac{1}{3}}-2 = 0...(1)
Let x^{\frac{1}{3}} = y
⸫ (1) ⇒ y^2-y-2 = 0
⇒ y^2-(2-y)y-2 = 0
⇒ y^2 -2y+y-2 = 0
⇒ y(y-2)+1(y-2) = 0
⇒ (y-2)(y+1) = 0
Either y-2 = 0
⇒ x^{\frac{1}{3}} = 2
⇒ (x^{\frac{1}{3}})^3 = 2^3
⇒ x = 8
or y+1 = 0
⇒ x^{\frac{1}{3}} = -1
⇒ (x^{\frac{1}{3}})^3 = (-1)^3
⇒ x = -1
⸫ The required solutions are -1 and 8
(xix) x^{-4}-10x^{-2}+9 = 0...(1)
Let x^{-2} = y
⸫ (1) ⇒ y^2-10y+9 = 0
⇒ y^2-9y-y+9 = 0
⇒ y(y-9)-1(y-9) = 0
⇒ (y-9)(y-1) = 0
Either y-9 = 0
⇒ x^{-2} = 9
⇒ x^2 = \frac{1}{9}
⇒ x = \pm \frac{1}{3}
or y-1 = 0
⇒ x^{-2} = 1
⇒ x^2 = 1
⇒ x = \pm1
⸫ The required solutions are 1, -1, \frac{1}{3} and -\frac{1}{3}
(xx) 3^{2x}+9 = 10(\frac{1}{3})^{-x}
⇒ 3^{2x}+9 = 10.3^x
⇒ 3^{2x}-10.3^x+9 = 0...(1)
Let 3^x = y
⸫ (1) ⇒ y^2-10y+9 = 0
⇒ y^2-9y-y+9 = 0
⇒ y(y-9)-1(y-9) = 0
⇒ (y-9)(y-1) = 0
Either y-9 = 0
⇒ 3^x = 9
⇒ 3^x = 3^2
⇒ x = 2
or y-1 = 0
⇒ 3^x = 1
⇒ 3^x = 3^0
⇒ x = 0
⸫ The required solutions are 0 and 2
Post a Comment