Processing math: 88%

Exercise 4.1 | Class 10 | Advanced Mathematics | Quadratic Equation

Advanced Mathematics | Class 10 | Exercise 4.1 1. Form a quadratic equation using the following roots:
(i) 5,7
Solution:
Here, the given roots are 5 and 7
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
 x2[(5)+7]x+(5)7=0
 x22x35=0


(ii) 12,3
Solution:
Here, the given roots are 12 and 3
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
 x2[(12)+(3)]x+(12)(3)=0
 x2(72)x+32=0
 x2+72x+32=0
 2x2+7x+3=0


(iii) 1,32
Solution:
Here, the given roots are 1 and 32
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
 x2[(1)+(32)]x+(1)(32)=0
 x2(12)x32=0
 x2+12x32=0
 2x2+x3=0


(iv) 1,45
Solution:
Here, the given roots are 1 and 45
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
 x2[(1)+(45)]x+(1)(45)=0
 x215x45=0
 x215x45=0
 5x2x4=0


(v) 12,13
Solution:
Here, the given roots are 12 and 13
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
 x2[(12)+(13)]x+(12)(13)=0
 x216x16=0
 x216x16=0
 6x2x1=0


(vi) 5i,5i
Solution:
Here, the given roots are 5i and 5i
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
 x2[(5i)+(5i)]x+(5i)(5i)=0
 x20x25i2=0
 x2025(1)=0
 x2+25=0



2. Form the quadratic equation whose one root is
(i) 3i
Solution:
Here, one root is 3i
Therefore, other root will be 3i
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
x2[(3i)+(3i)]x+(3i)(3i)=0
x2[0]x+[9i2]=0
x20+[3(1)]=0
x2+3=0


(ii) 4+5
Solution:
Here, one root is 4+5
⸫ The other root will be 45
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
x2[(4+5)+(45)]x+[(4+5)(45)]=0
x2[8]x+[(4)2(5)2]=0
x28x+[165]=0
x28x+11=0


(iii) 1(2+3)
Solution:
Here, one root is 1(2+3)=(23)(2+3)(23)
    =(23)(2)2(3)2=2343=23
⸫ The root will be 2+3
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
x2[(23)+(2+3)]x+[(23)(2+3)]=0
x2[4]x+[(2)2(3)2]=0
x24x+[43]=0
x24x+1=0


(iv) 132i
Solution:
Here, one root is 132i
⸫ The other root will be 1+32i
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
x2[(132i)+(1+32i)]x+[(132i)(1+32i)]=0
x2[2]x+[(1)2(32i)2]=0
x22x+[1[34(1)]]=0
x22x+[1+34]=0
x22x+74=0
4x28x+7=0


(v) 152
Solution:
Here, one root is 152
⸫ The other root will be 1+52
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
x2[(152)+(1+52)]x+[(152)(1+52)]=0
x2[151+52]x+[(1)2(5)24]=0
x2[22]x+[154]=0
x2x+[44]=0
x2x1=0


(vi) p+p2c
Solution:
Here, one root is p+p2c
⸫ The other root will be pp2c
⸫ The required quadratic equation is,
x2(sum of the roots)x+(product of the roots)=0
x2[(p+p2c)+(pp2c)]x
   +[(p+p2c)(pp2c)]=0
x2[2p]x+[(p)2(p2c)2]=0
x2[2p]x+[p2(p2c)]=0
x22px+[p2p2+c]=0
x22px+p2p2+c=0
x22px+c=0



3. Find a quadratic equation whose roots are
(i) 2 less than the roots of  x216x+63=0
Solution:
Let  α and  β be the two roots of the given quadratic equation.
Therefore, α+β=16 and αβ=63
Let the new roots be α2 and  β2
⸫ The required quadrartic equation is
 x2 (sum of the two new roots) x + (product of the two new roots) = 0
 x2[(α2)+(β2)]x+[(α2)(β2)]=0
 x2[(α+β)4]x+[αβ2α2β+4]=0
 x2[164]x+[αβ2(α+β)+4]=0
 x212x+[632(16)+4]=0
 x212x+[6732]=0
 x212x+35=0 (Ans.)


(ii) Greater by 4 than the roots of the quadratic equation  x2+13x+5=0
Solution:

Let  α and  β be the two roots of the given quadratic equation.
Therefore,  α+β=13 and  αβ=5
Let the new roots be  α+4 and  β+4
⸫ The required quadrartic equation is
 x2 (sum of the two new roots) x + (product of the two new roots) = 0
 x2[(α+4)+(β+4)]x+[(α+4)(β+4)]=0
 x2[(α+β)+8]x+[αβ+4α+4β+16]=0
 x2[(13)+8]x+[αβ+4(α+β)+16]=0
 x2(5)x+[5+4(13)+16]=0
 x2+5x+(2152)=0
 x2+5x31=0 (Ans.)


(iii) Reciprocals of the roots of  2x27x+6=0
Solution:

Let  α and  β be the two roots of the given quadratic equation.
α+β=72 and αβ=62=3
Let, the new roots be  1α and  1β as they are reciprocals of the roots of the given quadratic equation.
⸫ The required quadrartic equation is
 x2 (sum of the two new roots) x + (product of the two new roots) = 0
 x2(1α+1β)x+1α1β=0
 x2(β+ααβ)x+1αβ=0
 x2(723)x+13=0
 x2(76)x+13=0
 6x27x+2=0 (Ans.)



4. Find the value of  k such that
(i) one root of 2x25x+k=0 is twice the other.
Solution:
Let α be the one root of the quadratic equation 2x25x+k=0
Then, the other root is 2α
Now, Sum of the two roots, α+2α=(5)2
3α=52
α=56 ...(1)
Also, Product of the two roots, α×2α=k2
2α2=k2
2(56)2=k2   [using (1)]
2×2536=k2
2518=k2
k=259


(ii) (2k5)x24x15=0 and (3k8)x25x21=0 have a common root.
Solution:
Let α be the common roots of the given two quadratic equations, then
(2k5)α24α15=0 .....(1)
(3k8)α25α21=0 ......(2)
On cross-multiplying we get,
α2(4)(21)(15)(5)=α(15)(3k8)(2k5)(21)=1(2k5)(5)(4)(3k8)
α28475=α45k+120+42k105=110k+25+12k32
α29=α3k+15=12k7

Now, α29=α3k+15α=93k+15 ...(3)
Again, α3k+15=12k7α=3k+152k7 ...(4)

Comparing (3) and (4), we get
93k+15=3k+152k7
9(2k7)=(3k+15)2
18k63=9k2+22590k
0=9k290k18k+225+63
9k2108k+288=0
9(k212k+32)=0
k212k+32=0   [⸪ 9≠0]
k28k4k+32=0
k(k8)4(k8)=0
(k8)(k4)=0
k=8 or k=4




5. Under what condition
(i) 3x2+4mx+2=0 and 2x2+3x2=0 will have a common root?
Solution:
Let α be the common roots between the given quadartic equations, then
3α2+4mα+2=0
and 2α2+3α2=0
On cross-multiplying, we get
α28m6=α4(6)=198m
=α28m6=α4+6α=8m610
=α4+6=198mα=1098m
Comparing these two equations, we get
8m610=1098m
72m+64m254+48m=100
64m224m154=0
2(32m212m77)=0
32m212m77=0
32m256m+44m77=0
8m(4m7)+11(4m7)=0
(4m7)(8m+11)=0
Either 4m7=0m=74
Or 8m+11=0m=118
⸫ The required condition for the given quadratic equations to have a common root is m=74,m=118


(ii) one root of ax2+bx+c=0 will be n times the other?
Solution:

Let α be one of the roots of the quadratic equation ax2+bx+c=0 and so the other root be nα
From the relation between roots and coefficients, we have,
α+nα=ba
α(1+n)=ba
α=ba(1+n) ...(1)
Again, n(nα)=ca
nα2=ca
α2=cna
[ba(1+n)]2=cna   [using (1)]
b2a2(1+n)2=cna
b2ac=(1+n)2n


(iii) one root of x2px+q=0 will be twice the other.
Solution:

Let α and 2α be the roots of the quadratic equation x2px+q=0.
From the relation between roots and coefficients, we have,
α+2α=(p)
3α=p
α=p3 ...(1)
Again, α×2α=q
2α2=q
α2=q2
[p3]2=q2   [using (1)]
p29=q2
p2q=92


(iv) The roots of ax2+bx+c=0 will be in the ratio m:n?
Solution:

Let α be the common ratio between the roots of the quadratic equation ax2+bx+c=0.
So, the roots of the quadratic equation becomes mα and nα.
From the relation between roots and coefficients, we have,
mα+nαba
α(m+n)=ba
α=ba(m+n) ...(1)
Again, mα×nα=ca
mnα2=ca
mn[ba(m+n)]2=ca   [using (1)]
mn[b2a2(m+n)2]=ca
mnb2=ac(m+n)2


(v) ax2+bx+c=0 and px2+qx+r=0 will have a common root?
Solution:

Let us consider two quadratic equations
ax2+bx+c=0...(1)
and px2+qx+r=0 ...(2)
Let α be the common roots of the two quadratic equations, then
aα2+bα+c=0...(3)
and pα2+qα+r=0 ...(4)
On cross-multiplying, we get
α2brqc=αcpar=1aqbp
Now, α2brqc=αcpar
α=brqccpar...(5)
Also, αcpar=1aqbp
α=cparaqbp...(6)
Comparing (5) & (6), we get
brqccpar=cparaqbp
(cpar)2=(brqc)(aqbp)
This is the required condition for two quadratic equations to have one common root.


(vi) One root of ax2+bx+c=0 is four times the other?
Solution:

Let α and 4α be the roots of the quadratic equation ax2+bx+c=0.
From the relation between roots and coefficients, we have,
α+4αba
5α=ba
α=b5a ...(1)
Again, mα×4α=ca
4α2=ca
4[b5a]2=ca   [using (1)]
4[b225a2]=ca
4b2=25ac


(vii) the sum of the roots of x2mx+n=0 is k times their difference?
Solution:

Let α and β be the roots of the quadratic equation x2mx+n=0.
From the relation between roots and coefficients, we have,
α+β=(m)=m
Again, αβ=n
According to question,
α+β=k(αβ)
(α+β)2=k2(αβ)2   [squaring both sides]
(α+β)2=k2[(α+β)24αβ]
(α+β)2=k2(α+β)24k2αβ
4k2αβ=k2(α+β)2(α+β)2
4k2αβ=(α+β)2(k21)
4k2n=m2(k21)





6. If α and β are the roots of ax2+bx+c=0 then express the value of the following symmetric function in terms of the co-efficients a,b,c.
(i) α2+αβ+β2
(ii) (α+2β)(2α+β)
(iii) α4+α2β2+β4
(iv) α2β+β2α
Solution:
Since α and β are the roots of the quadratic equation ax2+bx+c=0
So, α+β=ba and αβ=ca

(i) α2+αβ+β2=α2+β2+αβ
=(α+β)22αβ+αβ
=(α+β)2αβ
=b2a2ca
=b2aca2


(ii) (α+2β)(2α+β)=2α2+αβ+4αβ+2β2
=2(α2+β2)+5αβ
=2[(α+β)22αβ]+5αβ
=2(α+β)2+αβ
=2b2a2+ca
=2b2+aca2


(iii) α4+α2β2+β4=(α2)2+(β2)2+(αβ)2
=(α2+β2)22α2β2+(αβ)2
=[(α2+β2)22α2β2]+(αβ)2
=(α2+β2)2α2β2
=[(α+β)22αβ]2(αβ)2
=[(ba)22ca]2c2a2
=(b2a22ca)2c2a2
=(b22ac)2a4c2a2
=(b22ac)2c2a2a4
=b44ab2c+4a2c2a2c2a4
=b44ab2c+3a2c2a4


(iv) α2β+β2α=α3+β3αβ
=(α+β)33αβ(α+β)αβ
=(ba)33ca(ba)ca
=b3a3+3bca2ca
=b3+3abca3ca
=b3+3abca2c





7. If α and β are the two roots of the quadratic equation ax2+bx+c=0 then find the quadratic equations having the following pairs of roots.
(i) αβ,βα
(ii) 1α2,1β2
(iii) α4,β4
(iv) αβ,βα
(v) α2+β2,1α2+1β2
(vi) 1α+β,1α+1β
(vii) (αβ)2,(α+β)2
(viii) α+2α,β+2α
(ix) α3β,β3α
(x) α2+αβ+β2,α2αβ+β2
Solution:
α and β are the two roots of the quadratic equation ax2+bx+c=0
α+β =ba and αβ=ca
Now,
(i) Here the sum of the roots,
αβ+βα=α2+β2αβ
    =[α+β]22αβαβ
    =b2a22caca
    =b22aca2ca
    =b22aca2×ac
    =b22acac
and the product of the roots,
αββα=1
⸫ The required quadratic equation is
x2(αβ+β)α)x+αββα=0
x2(b22acac)x+1=0
acx2(b22ac)x+ac=0


(ii) Here the sum of the roots,
1α2+1β2=β2+α2α2β2
    =(α+β)22αβ(αβ)2
    =(ba)22ca(ca)2
    =b2a22cac2a2
    =b22aca2c2a2
    =b22aca2×a2c2
    =b22acc2
and the product of the roots,
1α2×1β2=1(αβ)2
=1[ca]2=1c2a2=a2c2
⸫ The required quadratic equation is
x2[b22acc2]x+a2c2=0
c2x2(b22ac)x+a2=0


(iii) Here the sum of the roots,
α4+β4=(α2)2+(β2)2
    =(α2+β2)22α2β2
    =(α2+β2)22α2β2
    =[(α+β)22αβ]22(αβ)2
    =[(ba)22ca]22[ca]2
    =(b2a22ca)22c2a2
    =[b22aca2]22c2a2
    =(b22ac)2a42c2a2
    =(b22ac)22a2c2a4
    =(b2)2+(2ac)22(b2)(2ac)2a2c2a4
    =b4++4a2c24ab2c2a2c2a4
    =b4+2a2c24ab2ca4
and the product of the roots,
α4β4=(αβ)4
    =[ca]4=c4a4
⸫ The required quadratic equation is
x2[b4+2a2c24ab2ca4]x+c4a4=0
a4x2(b44ab2c+2a2c2)x+c4=0



(iv) Here the sum of the roots,
αβ+βα=αβ+βα
    =α+βαβ
    =baca
    =ba×ac
    =ba×ac
    =baa×ac
    =ba×c
    =bac
and the product of the roots,
αβ×βα=αβ×βα=1
⸫ The required quadratic equation is
x2[bac]x+1=0
x2+bacx+1=0
acx2+bx+ac=0



(v) Here the sum of the roots,
(α2+β2)+(1α2+1β2)=(α2+β2)+(α2+β2α2β2)
    =(α2+β2)(1+1α2β2)
    =[(α)+β)22αβ][1+1(αβ)2]
    =[(ba)22(ca)][1+1(ca)2]
    =(b2a22ca)(1+a2c2)
    =(b22aca2)(c2+a2c2)
    =(b22ac)(a2+c2)a2c2
and the product of the roots,
(α2+β2×(1α2+1β2)=(α2+β2)×(α2+β2α2β2)
    =(α2+β)2α2β2
    =[(α+β)22αβ]2(αβ)2
    =[(ba)22(ca)]2(ca)2
    =(b2a22ca)2c2a2
    =(b22aca2)2c2a2
    =(b22aca2)2×a2c2
    =(b22ac)2a4×a2c2
    =(b22ac)2a2c2
⸫ The required quadratic equation is
x2[(b22ac)(a2+c2)a2c2]x+(b22ac)2a2c2=0
ac2x2(b22ac)(a2+c2)x+(b22ac)2=0



(vi) Here the sum of the roots,
1α+β+(1α+1β)=1α+β+β+ααβ
    =1ba+baca
    =ab+(ba)×ac
    =abbc=(ab+bc)
    =(ac+b2bc)
and the product of the roots,
1α+β(1α+1β)=1α+β(β+ααβ)
    =1αβ=1ca=ac
⸫ The required quadratic equation is
x2[(ac+b2bc)]x+ac=0
bcx2+(ac+b2)x+ab=0



(vii) Here the sum of the roots,
(αβ)2+(α+β)2=2(α2+β2)
    =2[(α+β)22αβ]
    =2[(ba)22(ca)]
    =2[b2a22ca]=2(b22aca2)
and the product of the roots,
(αβ)2×(α+β)2=[(α+β)24αβ]×(α+β)2
    =[(ba)24(ca)][ba]
    =[b2a24ca][b2a2]
    =(b24aca2)(b2a2)=b2(b24ac)a4
⸫ The required quadratic equation is
x2[2(b22aca2)]x+b2(b24ac)a4=0
a4x22a2(b22ac)x+b2(b24ac)=0



(viii) Here the sum of the roots,
(α+2α)+(β+2α)=α+2α+β+2α
    =3(α+β)=3(ba)=3ba
and the product of the roots,
(α+2α)(β+2α)=αβ+2α2+2β2+4αβ
    =2(α2+β2)+5αβ
    =2[(α+β)22αβ]+5αβ
    =2(α+β)24αβ+5αβ=2(α+β)2+αβ
    =2(ba)2+ca=2b2a2+ca=2b2+aca2
⸫ The required quadratic equation is
x2(3ba)x+2b2+aca2=0
a2x2+3abx+2b2+ac=0



(ix) Here the sum of the roots,
α3β+β3α=α4+β4αβ
    =(α2)2+(β2)2αβ=(α2+β2)22α2β2αβ
    =[(α+β)22αβ]22(αβ)2αβ
    =[(ba)22(ca)]22(ca)2ca
    =[b2a22ca]22c2a2ca
    =[b22aca2]22c2a2ca
    =b4+4a2c24ab2ca42c2a2ca
    =b4+4a2c24ab2c2a2c2a4×ca
    =b4+2a2c2+4ab2ca3c
and the product of the roots,
α3ββ3α=α2β2=(αβ)2
    =(ca)2=c2a2
⸫ The required quadratic equation is
x2(b4+2a2c2+4ab2ca3c)x+(ca)2+c2a2
a3cx2(b4+2a2c24ab2c)x+ac3=0



(x) Here the sum of the roots,
α2+αβ+β2+α2αβ+β2=2(α2+β2)
    =2[(α+β)22αβ]
    =2[(ba)22ca]
    =2[b2a22ca]
    =2(b22aca2)=2b24aca2
and the product of the roots,
(α2+αβ+β2)(α2αβ+β2)
    =(α2+β2+αβ)(α2+β2αβ)
    =(α+β)2(αβ)2
    =[(α+β)22αβ]2(αβ)2
    =[(ba)22(ca)]2(ca)2
    =[b2a22ca]2c2a2
    =(b22aca2)2c2a2
    =b4+4a2c24ab2ca4c2a2
    =b4+4a2c24ab2ca2c2a4
    =b4+3a2c24ab2ca4
⸫ The required quadratic equation is
x2(2b24aca2)x+b4+3a2c24ab2ca4=0
a4x2(2a2b24a3c)x+(b4+3a2c24ab2c)=0





8. If a2=5a3 and b2=5b3(ab), then find the quadratic equation whose roots are ab and ba.
Solution:

Here, a2=5a3a25a+3=0
and b2=5a3b25a+3=0
x25x+3=0 is the two quadratic equation whose roots are a and b
a+b=5 and ab=3

Now, ab+ba=a2+b2ab=(a+b)22abab
    =522(3)3=193
Also, abba=1
⸫ The required quadratic equation having the roots ab and ba is, x2(193)x+1=03x219x+3=0





9. If p and q are the roots of 3x2+6x+2=0, then find the quadratic equation having the roots p2q,q2p
Solution:
Given, p and q are the roots of 3x2+6x+2=0
p+q=63=2 and ab=23
Now, (p2q)+(q2p)=p3q3pq
    =(p3+q3)pq=[(p+q)33pq(p+q)]pq
    =[(2)33(23)(2)]23
    =(8+4)23=4×32=6
Also, (p2q)×(q2p)=pq=23
⸫ The required quadratic equation having the roots p2q,q2p is, x26x+23=03x218x+2=0





10. If 4 is a root of x2+ax+8=0 and the roots of x2+ax+b=0 are equal, then find the value of b.
Solution:
⸪ 4 is a root of the quadratic equations x2+ax+8=0
(4)2+4a+8=0
16+4a+8=0
4a=24
a=6 ...(1)
⸪ The quadratic equation x2+ax+b=0 is having same roots.
b24ac=0
a24(1)(b)=0
(6)24b=0   [using (1)]
364b=0
4b=36
b=9





11. If α be one root of 4x2+2x1=0, then show that the other root is 4α33α
Solution:
α is one root of the quadratic equation 4x2+2x1=0
4α2+2x104α2=12α ...(1)
α2=12α4 ...(2)
Also, we have 4α33α as the other root of the given quadratic equation. Let us now reduce its degree,
4α33α=4α2.α3α
=α(12α)3α   [using (1)]
=α2α23α
=2α22α
=2(12α4)2α   [using (2)]
=12+α2α
=α12
4α33α=(α+12)
Now, we will see if the reduced value of the root other than α satisfies the given quadratic equation,
LHS= 4[(α+12)]2+2[(α+12)]1
=4(α2+α+14)+2α11
=4α2+1+4α2α2
=12α+1+4α2α2   [using (1)]
=0 = RHS
⸫ When α is one root of 4x2+2x1=0 then the other root is 4α33α

Hence shown.







12. If the difference of the two roots of x2+px+q=0 is 1, then show that p2+4q2=(1+2q)2
Solution:
⸪ The difference between the two roots of the given quadratic equation is 1, let us consider  α and  α1 are the roots of the quadratic equation x2+px+q=0
 α+α1=p
 2α1=pα=1p2 ...(1)

Also,  α(α1)=q
 (1p2)(1p21)=q   [using (1)]
 (1p2)(1p22)=q
 [(1p)2][(1p)2]=q
 (1p)2(1+p)2=q
 1+p24=q
 p21=4q
 p2=4q+1...(2)

Now, LHS = p2+4q2=(4q+1)+4q2   [using (2)]
 =1+4q+4q2=(1+2q)2= RHS

Hence shown.







13. If  ax2+bx+c=0 and  bx2+cx+a=0 have a common root, then prove that  a+b+c=0 or  a=b=c .
Solution:

Let α be the common roots of the two given quadratic equations.
aα2+bα+c=0 ...(1)
bα2+cα+a=0 ...(2)

On cross-multiplying, we get,
α2abc2=αbca2=1acb2
α2abc2=αbca2α=abc2bca2 ...(3)
Also, αbca2=aacb2α=bca2acb2 ...(4)

Comparing (3) & (4), we get
abc2bca2=bca2acb2
(abc2)(acb2)=(bca2)2
a2bcab3ac3+b2c2=b2c2+a42a2bc
a2bc+2a2bcab3ac3a4=0
a4ab3ac3+3a2bc=0
a(a3+b3+c33abc)=0
a3+b3+c33abc=0[a0]
12(a+b+c)[(ab)2+(bc)2+(ca)2]=0
(a+b+c)[(ab)2+(bc)2+(ca)2]=0   [⸪ 120]
⸫ Either a+b+c = 0
or (ab)2+(bc)2+(ca)2=0

Now, for the second case, since the sum of three positive term is zero, so, each term must be equal to zero. Therefore,
(ab)2=0ab=0a=b
(bc)2=0bc=0b=c
(ca)2=0ca=0c=a
 a=b=c

Hence proved.







14. If the two roots of  ax2+bx+a=0 are equal, then show that a2+b2a2b2=53
Solution:

⸪ The two roots of  ax2+bx+a=0 are equal,
 b24ac=0
b24a2=0   [⸪  c=a]
b2=4a2 ...(1)
Now, a2+b2a2b2=a2+4a2a24a2   [using (1)]
      =5a23a2
a2+b2a2b2=53

Hence shown.







15. Solve
(i) x413x2+36=0...(1)
Let x2=y
⸫ (1) ⇒y213y+36=0
y2(9+4)y+36=0
y29y4y+36=0
y(y9)4(y9)=0
(y9)(y4)=0
Either y=9
x2=9
x=±3
or y=4
x2=4
x=±2
⸫ The required roots are 3, -3, 2 and -2



(ii) x43x2+2=0...(1)
Let x2=y
⸫ (1) ⇒y23y+2=0
y2(2+1)y+2=0
y22yy+2=0
y(y2)1(y2)=0
(y2)(y1)=0
Either y=2x2=2

x=±2
or y=1x2=1

x=±1
⸫ The required roots are 2,2,1 and 1



(iii) (x23x)25(x23x)+6=0...(1)
Let x33x=y
⸫ (1) ⇒ y25y+6=0
y2(2+3)y+6=0
y22y3y+6=0
y(y2)3(y2)=0
(y2)(y3)=0
Either y2=0
x23x2=0
x=(3)±(3)24(1)(2)2(1)
x=3±9+82
x=3±172
or y3=0
x23x3=0
x=(3)±(3)24(1)(3)2(1)
x=3±9+122
x=3±212
⸫ The required roots are 3±172,3±212



(iv) (x2+2x3)23(x2+2x1)+8=0....(1)
Let x2+2x1=y
⸫ (1) ⇒ (y2)23y+8=0
y22(y)(2)+43y+8=0
y24y3y+8=0
y27y+12=0
y2(4+3)y+12=0
y24y3y+12=0
y(y4)3(y4)=0
(y4)(y3)=0
Either y4=0
x2+2x14=0
x2+2x5=0
x=(2)±(2)24(1)(5)2(1)
x=2±4+202
x=2±242
x=2±262
or y3=0
x2+2x13=0
x2+2x4=0
x=(2)±(2)24(1)(4)2(1)
x=2±4+162
x=2±202
x=2±252
⸫ The required roots are 2±262,2±252



(v) x25x+10=5x25x+4...(1)
Let y=x25x+4
⸫ (1) ⇒ (y+6)=5y
(y+6)2=(5y)2
y2+2(y)(6)+62=52y
y2+12y+36=25y
y213y+36=0
y29y4y+36=0
y(y9)4(y9)=0
(y9)(y4)=0
Either y9=4
x25x+49=0
x25x5=0
x=(5)±(5)24(1)(5)2(1)
x=5±25+202
x=5±452
x=5±352
or y4=0
x25x+44=0
x25x=0
x(x5)=0
x=0
or x=5
⸫ The required roots are 0, 5 and 5±352

Alternative Solution:
x25x+10=5x25x+4
x25x+105x25x+4=0...(1)
Let y=x25x+4
⸫ (1) ⇒ y2=x25x+4
y24=x25x
(1)y24+105y=0
y25y+6=0
y22y3y+6=0
y(y2)3(y2)=0
(y2)(y3)=0
Either y2=9
x25x+4=9
x25x5=0
x=(5)±(5)24(1)(5)2(1)
x=5±25+202
x=5±452
x=5±352
or y2=4
x25x4=4
x25x=0
x(x5)=0
x=0 or x=5
⸫ The required roots are 0, 5 and 5±352



(vi) x2+5x2+x2+5x3...(1)
Let x2+5x2=y
⸫ (1) ⇒ y+y3=3
y=3y3
(y)2=(3y3)2
y=322(3)(y3)+(y3)2
y=96y3+y3
6=6y3
1=y3
1=y3
y=4
x2+5x2=4
x2+5x6=0
x2+(61)x6=0
x2+6xx6=0
x(x+6)1(x+6)=0
(x+6)(x1)=0
Either x+6=0
x=6
or x1=0
x=1
⸫ The required roots are -6 and 1



(vii) x1x+1xx=136...(1)
Let y=x1x1y=1xx
⸫ (1) ⇒ y+1y=136
y2+1y=136
6y2+6=13y
6y213y+6=0
6y2(9+4)y+6=0
6y29y4y+6=0
3y(2y3)2(2y3)=0
(2y3)(3y2)
Either 2y3=0y=32
x1x=32
(x1x)2=(32)2
x1x=944x=99x
13x=9x=913
or 3y3=0y=23
x1x=23
(x1x)2=(23)2
x1x=49
9x=44x

13x=4
x=413
⸫ The required solutions are 913 and 413



(viii) (x2+1x2)5(x+1x)=4
x2+2(x)(1x)+(1x)25(x+1x)2=4
(x+1x)25(x+1x)6=0....(1)
Let x+1x=y
⸫ (1) ⇒ y25y6=0
y2(61)y6=0
y26y+y6=0
y(y6)+1(y6)
(y6)(y+1)
Either y6=0
y=6
x+1x=6
x2+1x=6
x26x+1=0
x=(6)±624(1)(1)2(1)
=6±3642=6±422
=2(3±22)2=3±22
or y+1=0
x+1x+1=0
x2+1+xx=0
x2+x+1=0
x=1±124(1)(1)2(1)
=1±32=1±3i2
⸫ The required solutions are 3±22 and 1±3i2



(ix) (x1)(x2)(x3)(x4)=120
[(x1)(x4)][(x2)(x3)]=120   [⸪ -1-4=-2-3]
(x24xx+4)(x23x2x+6)=120
(x25x+4)(x25x+6)=120
Let x25x=y
⸫ (1) ⇒ (y+4)(y+6)=120
y2+6y+4y+36=120
y2+10y96=0
y2+(166)y96=0
Y2+16y6y96=0
y(y+16)6(y+16)=0
(y+16)(y6)=0
Either y+16=0
x25x+16=0
x=(5)±(5)24.1.162.1
=5±392=5±39i2
or y6=0
x25x6=0
x26x+x6=0
x(x6)+1(x6)
(x+1)(x6)=0

x=6,1
⸫ The required solutions are 6, 1 and 5±39i2



(x) (x+1)(x+3)(x+5)(x+7)=20
(x+1)(x+7)(x+3)(x+5)=20
(x2+7x+x+7)(x2+5x+3x+15)=20
(x2+8x+7)(x2+8x+15)=20...(1)
Let x2+8x=y
⸫ (1) ⇒ (y+7)(y+15)=20
y2+15y+7y+105=20
y2+22y+85=0
y2+17y+5y+85=0
y(y+17)+5(y+17)=0
(y+17)(y+5)=0
Either y+17=0
x2+8x+17=0
x=8±824.172
=8±64682
=8±42
=8±2i2
=2(4±i)2
=4±i
or y+5=0
x2+8x+5=0
x=8±824.52
=8±64202
=8±442
=8±2112
=2(4±11)2
=4±11
⸫ The required solutions are 4±i and 4±11



(xi) 1x2+1x+5=1x6
x+5+x2(x2)(x+5)=1x6
2x+3x2+5x2x10=1x6
2x+3x2+3x10=1x6
2x212x+3x18=x2+3x10
x212x8=0
x=12±1224(8)2
=12±144+322
=12±1762
=12±4112
=2(6±211)2
=6±211
⸫ The required solutions are 6±211



(xii) 5x2+6x+8=1x2+6x+5+4x2+6x+9 .....(1)
Let x62=6x=y
⸫ (1) ⇒ 5y+8=1y+5+4y+9
4y+8+1y+8=1y+5+4y+9
4y+84y+9=1y+51y+8
4(1y+81y+9)=y+8y5(y+5)(y+8)
4(y+8y8(y+8)(y+9))=3(y+5)(y+8)
4(1(y+8)(y+9))=3(y+5)(y+8)
4(y+5)(y+8)=3(y+8)(y+9)
4(y+5)(y+8)3(y+8)(y+9)
(y+8)[4(y+5)3(y+9)]=0
(y+8)[4y+203y27]=0
(y+8)(y7)=0
Either y+8=0
x2+6x+8=0
x2+2x+4x+8=0
x(x+2)+4(x+2)=0
x=2 or 4
or y7=0
x2+67=0
x2+7xx7=0
x(x+7)1(x+7)=0
x=1
or 7
⸫ The required solutions are 1,2,4 and 7



(xiii) x252x33x26x+1=32
x252x3=32+3x26x+1
x252x3=3(6x+1)+6x22(6x+1)
x252x3=18x+3+6x212x+2
12x3+2x260x10=36x2+6x+12x354x918x2
2x2+18x236x260x+54x6x+910=0
16x212x1=0
16x2+12x+1=0
x=12±1224.162.16
=12±1446432
=12±8032
=12±4532
=4(3±5)32
=3±58
⸫ The required solutions are 3±58



(xiv) 2x1+3x2=4x3+5x4
2x15x4=4x33x2
(2x15x4)2=(4x33x2)2=4x3+3x22(4x3)(3x2)
7x52(2x1)(5x4)=7x52(4x3)(3x2)
⇒ \sqrt{2x-1}.\sqrt{5x-4}=\sqrt{4x-3}.\sqrt{3x-2}
⇒ (\sqrt{2x-1}.\sqrt{5x-4})^2=(\sqrt{4x-3}.\sqrt{3x-2})^2
⇒ (2x-1)(5x-4)=(4x-3)(3x-2)
⇒ 10x^2-8x-5x+4=12x^2-8x-9x+6
⇒ -2x^2+4x-2=0
⇒ x^2-2x+1=0
⇒ (x-1)^2 =0
⇒ x=1, 1
⸫ The required solutions are 1 and 1



(xv) \sqrt{x^2-4}+\sqrt{x^2+5x+6}=\sqrt{3x^2+13x+14}
⇒ \sqrt{(x+2)(x-2)}+\sqrt{(x+2){x+3}}-{\sqrt{x+2}(3x+7)} = 0
⇒ \sqrt{x+2}(\sqrt{x-2}+\sqrt{x+3}-\sqrt{3x+7}) = 0
Either \sqrt{x+2} = 0
⇒ x+2 = 0
⇒ x = -2
or \sqrt{x-2}+\sqrt{x+3}-\sqrt{3x+7} = 0
⇒ \sqrt{x-2}+\sqrt{x+3}=\sqrt{3x+7}
⇒ (\sqrt{x-2}+\sqrt{x+3})^2=(\sqrt{3x+7})^2
⇒ (\sqrt{x-2})^2+(\sqrt{x+3})^2+2.\sqrt{x-2}.\sqrt{x+3}=3x+7
⇒ x-2+x+3+2.\sqrt{(x-2)(x+3)}=3x+7
⇒ 2.\sqrt{(x-2)(x+3)} = x+6
⇒ (2.\sqrt{(x^2+x-6})^2 = (x+6)^2
⇒ 4(x^2+x-6) = x^2+36+12x
⇒ 4x^2+4x-24-x^2-12x-36=0
⇒ 3x^2-8x-60=0
⇒ 3x^2-18x+10x-60=0
⇒ 3x(x-6)+10(x-6) = 0
⇒ (x-6)(x+10) = 0
Either x = 6
or x = -\frac{10}{3} [Unacceptable]
⸫ The required solutions are -2 and 6



(xvi) 3^{x+3}+3^x-3^{2x+1} = 9
⇒ 3^x.3^3+3^x-3^x.3 =9
⇒ 27.3^x+3^x-3.3^{2x} = 9....(1)
Let 3^x = y
⸫ (1) ⇒ 27y+y-3y^2 = 9
⇒ -3y^2+28y-9 = 0
⇒ 3y^2-28y+9 = 0
⇒ 3y^2-(1+27)y+9 = 0
⇒ 3y^2-y-27y+9 = 0
⇒ y(3y-1)-9(3y-1)
⇒ (y-9)(3y-1)
Either y-9 = 0
⇒ 3^x=9=3^2
⇒ x = 2
or 3y-1 = 0
⇒ y =\frac{1}{3}
⇒ 3^x = 3^{-1}
⇒ x = -1
⸫ The required solutions are 2 and -1



(xvii) 4^x-3.2^{x+2}+32 = 0
⇒ (2)^{2x}-3.2^x.2^2+32 = 0
⇒ 2^{2x}+12.2^{2x}+32 = 0...(1)
Let 2^x = y
⸫ (1) ⇒ y^2-12y+32 = 0
⇒ y^2-4y-8y+32 = 0
⇒ y(y-4)-8(y-4) = 0
⇒ (y-4)(y-8) = 0
Either y-4 = 0
⇒ y = 4
⇒ 2^x = 4
⇒ 2^x = 2^2
⇒ x = 2
or y-8 = 0
⇒ y = 8
⇒ 2^x = 2^3
⇒ x = 3
⸫ The required solutions are 2 and 3



(xviii) x^{\frac{2}{3}}-x^{\frac{1}{3}}-2 = 0...(1)
Let x^{\frac{1}{3}} = y
⸫ (1) ⇒ y^2-y-2 = 0
⇒ y^2-(2-y)y-2 = 0
⇒ y^2 -2y+y-2 = 0
⇒ y(y-2)+1(y-2) = 0
⇒ (y-2)(y+1) = 0
Either y-2 = 0
⇒ x^{\frac{1}{3}} = 2
⇒ (x^{\frac{1}{3}})^3 = 2^3
⇒ x = 8
or y+1 = 0
⇒ x^{\frac{1}{3}} = -1
⇒ (x^{\frac{1}{3}})^3 = (-1)^3
⇒ x = -1
⸫ The required solutions are -1 and 8



(xix) x^{-4}-10x^{-2}+9 = 0...(1)
Let x^{-2} = y
⸫ (1) ⇒ y^2-10y+9 = 0
⇒ y^2-9y-y+9 = 0
⇒ y(y-9)-1(y-9) = 0
⇒ (y-9)(y-1) = 0
Either y-9 = 0
⇒ x^{-2} = 9
⇒ x^2 = \frac{1}{9}
⇒ x = \pm \frac{1}{3}
or y-1 = 0
⇒ x^{-2} = 1
⇒ x^2 = 1
⇒ x = \pm1
⸫ The required solutions are 1, -1, \frac{1}{3} and -\frac{1}{3}



(xx) 3^{2x}+9 = 10(\frac{1}{3})^{-x}
⇒ 3^{2x}+9 = 10.3^x
⇒ 3^{2x}-10.3^x+9 = 0...(1)
Let 3^x = y
⸫ (1) ⇒ y^2-10y+9 = 0
⇒ y^2-9y-y+9 = 0
⇒ y(y-9)-1(y-9) = 0
⇒ (y-9)(y-1) = 0
Either y-9 = 0
⇒ 3^x = 9
⇒ 3^x = 3^2
⇒ x = 2
or y-1 = 0
⇒ 3^x = 1
⇒ 3^x = 3^0
⇒ x = 0
⸫ The required solutions are 0 and 2

Post a Comment

Previous Post Next Post