Loading [MathJax]/jax/output/CommonHTML/jax.js

Properties of Cartesian product of Sets

For the sets A, B, C and D, we have-
Property 1:  A×(BC)=(A×B)(A×C)
Proof:
Let  (x,y)A×(BC)
 xA,y(BC)
 xA,(yB or  yC)
 (xA,yB) or  (xA,yC)
 (x,y)A×B or  (x,y)A×C
 (x,y)(A×B)(A×C)
 A×(BC)=(A×B)(A×C)


Property 2:  A×(BC)=(A×B)(A×C)
Proof:
Let  (x,y)A×(BC)
 xA,y(BC)
 xA,(yB and  yC)
 (xA,yB) and  (xA,yC)
 (x,y)A×B and  (x,y)A×C
 (x,y)(A×B)(A×C)
 A×(BC)=(A×B)(A×C)


Property 3:  (A×B)(C×D)=(AC)×(BD)
Proof:
Let  (x,y)(A×B)(C×D)
 (x,y)(A×B) or  (x,y)(C×D)
 (xA,yB) or  (xC,yD)
 (xA or  xC),  (yB or  yD)
 (xAC),  (yBD)
 (x,y)(AC)×(BD)
 (A×B)(C×D)=(AC)×(BD)


Property 4:  (A×B)(C×D)=(AC)×(BD)
Proof:
Let  (x,y)(A×B)(C×D)
 (x,y)(A×B) and  (x,y)(C×D)
 (xA and  xC) and  (yB and  yD)
 (xAC) and  (yBD)
 (x,y)(AC)×(BD)
 (A×B)(C×D)=(AC)×(BD)


Property 5:  A×(BC)=(A×B)(A×C)
Proof:
Let  (x,y)A×(BC)
 xA and  y(BC)
 xA and  (yB and  yC)
 (xA and  yB) and  (xA and  yC)
 (x,y)A×B and  (x,y)A×C
 (x,y)(A×B)(A×C)
 A×(BC)=(A×B)(A×C)


Property 6:  (AB)×C=(A×C)(B×C)
Proof:
Let  x(AB)×C
 x(AB) and  yC
 (xA and  xB) and  yC
 (xA and  yC) and  (xB and  yC)
 (x,y)A×C and  (x,y)B×C
 (x,y)(A×C)(B×C)
 (AB)×C=(A×C)(B×C)


Property 7:  A×B=B×A iff  A=ϕ or  B=ϕ or  A=B
Proof:
Case 1:
Let  A=ϕ
Now  A×B=ϕ×B=ϕ   [⸪  A=ϕ ]
also  B×A=B×ϕ=ϕ   [⸪  A=ϕ ]
Hence  A×B=B×A
Case 2:
Let  B=ϕ
Now  A×B=A×ϕ=ϕ   [⸪  B=ϕ]
also  B×A=ϕ×A=ϕ   [⸪  B=ϕ]
Hence  A×B=B×A
Case 3:
Let  A=B
Now  A×B=A×A   [⸪  A=B ]
also  B×A=A×A   [⸪  A=B ]
Hence  A×B=B×A


Q. If  A×B=B×A then show that  A=B
Solution:
Let  aA(a,b)A×B  bB
     (a,b)B×A   [⸪  A×B=B×A]
     aB [definition of Cartesian product of sets]
Conversely,
Let  bA(a,b)A×B  aA
     (a,b)B×A   [⸪  A×B=B×A]
     bA [definition of Cartesian product of sets]
Hence,  A=B


Q. If  A×B=A×C then show that  B=C
Solution:
Let  bB(a,b)A×B  aA
     (a,b)A×C   [⸪  A×B=A×C]
     bC [definition of Cartesian product of sets]
Conversely,
Let  cC(a,c)A×C  aA
     (a,c)A×B   [⸪  A×B=A×C]
     cB [definition of Cartesian product of sets]
Hence,  B=C


Q. If A, B and C be three sets where  BA then show that  (B×C)(A×C)
Solution:
Let  (b,c)B×C
 bB and  cC
 bA and  cC   [⸪  BA]
 (b,c)A×C
Hence  (B×C)(A×C)


Q. If A, B and C be three sets where  AB then show that  (A×C)(B×C)
Solution:
Let  (a,c)A×C
 aA and  cC
 aB and  cC   [⸪  AB]
 (a,c)B×C
Hence  (A×C)(B×C)


Q. If  AB and  CD then show that  (A×C)(B×D)
Solution:
Let  (a,c)A×C
 aA and  cC
 aB and  cD   [⸪  AB and  CD]
 (a,c)B×D
Hence  (A×C)(B×D)

Post a Comment

Previous Post Next Post