Algebraic Properties of Statements
Associative Law
Commutative Law
Distributive Law
Identity Law
Complement Law
De-Morgan's Law
Algebraic operations are performed among the statements also, but here the operations are the connectives. Let p,q and r be three statements. Let T denotes some true and F denotes some false statements then the following equivalent statements are valid. Also, with the help of truth tables all of them are proved as follow-
Idempotent Law- p∨p≡p
- p∧p≡p
p | p∨p |
T | T |
F | F |
p | p∧p |
T | T |
F | F |
Associative Law
- (p∨q)∨r≡p∨(q∨r)
- (p∧q)∧r≡p∧(q∧r)
p | q | r | p∨q | q∨r | (p∨q)∨r | p∨(q∨r) |
T | T | T | T | T | T | T |
T | T | F | T | T | T | T |
T | F | T | T | T | T | T |
T | F | F | T | F | T | T |
F | T | T | T | T | T | T |
F | T | F | T | T | T | T |
F | F | T | F | T | T | T |
F | F | F | F | F | F | F |
p | q | r | p∧q | q∧r | (p∧q)∧r | p∧(q∧r) |
T | T | T | T | T | T | T |
T | T | F | T | F | F | F |
T | F | T | F | F | F | F |
T | F | F | F | F | F | F |
F | T | T | F | T | F | F |
F | T | F | F | F | F | F |
F | F | T | F | F | F | F |
F | F | F | F | F | F | F |
Commutative Law
- p∨q≡q∨p
- p∧q≡q∧p
p | q | p∨q | q∨p |
T | T | T | T |
T | F | T | T |
F | T | T | T |
F | F | F | F |
p | q | p∧q | q∧p |
T | T | T | T |
T | F | F | F |
F | T | F | F |
F | F | F | F |
Distributive Law
- p∨(q∧r)≡(p∨q)∧(p∨r)
- p∧(q∨r)≡(p∧q)∨(p∧r)
p | q | r | q∧r | p∨q | p∨r | p∨(q∧r) | (p∨q)∧(p∨r) |
T | T | T | T | T | T | T | T |
T | T | F | F | T | T | T | T |
T | F | T | F | T | T | T | T |
T | F | F | F | T | T | T | T |
F | T | T | T | T | T | T | T |
F | T | F | F | T | F | F | F |
F | F | T | F | F | T | F | F |
F | F | F | F | F | F | F | F |
p | q | r | q∨r | p∧q | p∧r | p∧(q∨r) | (p∧q)∨(p∧r) |
T | T | T | T | T | T | T | T |
T | T | F | T | T | F | T | T |
T | F | T | T | F | T | T | T |
T | F | F | F | F | F | F | F |
F | T | T | T | F | F | F | F |
F | T | F | T | F | F | F | F |
F | F | T | T | F | F | F | F |
F | F | F | F | F | F | F | F |
Identity Law
- p∨F≡p
- p∨T≡T
- p∧T≡p
- p∧F≡F
p | F | p∨F |
T | F | T |
F | F | F |
p | T | p∨T |
T | T | T |
F | T | T |
p | T | p∧T |
T | T | T |
F | T | F |
p | F | p∧F |
T | F | F |
F | F | F |
Complement Law
- p∨∼p≡T
- ∼(∼p)≡p
- p∧∼p≡F
- ∼T≡F ; ∼F≡T
p | ∼p | p∨∼p | T |
T | F | T | T |
F | T | T | T |
p | ∼p | ∼(∼p) |
T | F | T |
F | T | F |
p | ∼p | p∧∼p | F |
T | F | F | F |
F | T | F | F |
T | ∼T | F | ∼F |
T | F | F | T |
T | F | F | T |
De-Morgan's Law
- ∼(p∨q)≡∼p∧∼q
- ∼(p∧q)≡∼p∨∼q
p | q | ∼p | ∼q | p∨q | ∼(p∨q) | ∼p∧∼q |
T | T | F | F | T | F | F |
T | F | F | T | T | F | F |
F | T | T | F | T | F | F |
F | F | T | T | F | T | T |
p | q | ∼p | ∼q | p∧q | ∼(p∧q) | ∼p∨∼q |
T | T | F | F | T | F | F |
T | F | F | T | F | T | T |
F | T | T | F | F | T | T |
F | F | T | T | F | T | T |
Post a Comment