Processing math: 100%

Exercise 4.3 | Class 10 | Advanced Mathematics | Quadratic Equation

Advanced Mathematics | Class 10 | Exercise 4.3 Solve the following equations:
(1)   3x2y=2, 9x2+4y2=2
Solution:
Let, 3x2y=2x=2+2y3 ...(1)
and 9x2+4y2=2 ...(2)
9[2+2y3]2+4y2=2   [using (1)]
9[4+4y2+8y9]+4y2=2
4+4y2+8y+4y2=2
8y2+8y+2=0
4y2+4y+1=0
(2y+1)2=0
y=12 or 12
When y=12
(1)⇒ x=2+2(12)3=213=13
Since both the value of y are equal, the required solutions are (13,12) and (13,12)



(8)   x+y+xy=28, x2+y2+xy=336
Solution:
Let, x+y+xy=28 ...(1)
and x2+y2+xy=336 ...(2)
(x+y)22xy+xy=336
(x+y)2xy=336
(x+y)2(xy)2=336
(x+y+xy)(x+yxy)=336
28(x+yxy)=336   [using (1)]
x+yxy=12 ...(3)
(1)+(3) ⇒ x+y+xy+x+yxy=28+12
2(x+y)=40
x+y=20
x=20y ...(4)
(2) ⇒ (20y)2+y2+(20y)=336   [using (4)]
40040y+y2+y2y2+20y=336
y216y4y+64=0
y(y16)4(y16)=0
y=4 or 16
When y=4, (4)⇒ x=204=16
When y=16, (4)⇒ x=2016=4
⸫ The required solutions are (4,16) and (16,4)



(10)   xy+yx=103, x+y=10
Solution:
Let, xy+yx=103 ...(1)
and x+y=10 ...(2)
x=10y ...(3)

(1)⇒ x+yxy=103
10xy=103   [using (2)]
xy=3
(10y)y=3
(10yy2)2=33
10yy2=9
y210y+9=0
y29yy+9=0
y(y9)1(y9)=0
(y1)(y9)=0
y=1 or 9
When y=1, (3)⇒ x=101=9
When y=9, (3)⇒ x=109=1
⸫ The required solutions are (4,16) and (16,4)



(12)   x+y=p+q, pq+qy=2
Solution:
Let, x+y=p+q ...(1)
xp=qy
px=yq ...(2)
and pq+qy=2
pq1+qy1=0 ...(3)
pxx+qyy=0
yqx+yqy=0   [using (2)]
(yq)(1x1y)=0
Either y=q
or 1x1y
1x=1y
x=y
When y=q , (1)⇒ x+q=p+qx=p
When y=x , (1)⇒ x+x=p+qx=p+q2    y=p+q2  [  x=y] ⸫ The required solutions are (p,q) and (p+q2,p+q2)


(14)   ax+by=2, a2x2+b2y2=2
Solution:
Let, ax+by=2 ...(1)
and a2x2+b2y2=2
(ax+by)22abxy=2
(2)22abxy=2   [using (1)]
2=2abxy
abxy=1
by=xa ...(2)
(1)⇒ ax+xa=2   [using (2)]
a2+x2ax=2
a2+x2=2ax
a2+x22ax=0
(xa)2=0
(xa)(xa)=0
x=a or a
When x=a , (2)⇒ by=aaby=1y=b
Since both the value of x are equal, the required solutions are (a,b) and (a,b)



(16)   8.2xy=4y, 27.9x.3xy=1
Solution:
Let, 8.2xy=4y
23.2xy=(22)y
23+xy=22y
3+xy=2y
xy=2y3 ...(1)
and 27.9x.3xy=1
33.(32x.3xy=1
33+2x+xy=30
3+2x+xy=0
3+2x+2y3=0   [using (1)]
2(x+y)=0
x=y ...(2)
(1)⇒ (y)y=2y3
y22y+3=0
y2+2y3=0
y2+3yy3=0
y(y+3)1(y+3)=0
(y+3)(y1)=0
y=3 or 1
When y=3 , (2)⇒ x=(3)x=3
When y=1 , (2)⇒ x=(1)x=1
⸫ The required solutions are (1,3) and 1,3)




20. Find the coordinates of the points at which x-axis and y-axis intersect the curves represented by the following equations:
(i) 2x23xy+y2+x2y3=0
Solution:
2x23xy+y2+x2y3=0 ...(1)
At x-axis, y=0, then
(1) ⇒ 2x2+x3=0
2x2+3x2x3=0
x(2x+3)1(2x+3)=0
(2x+3)(x1)=0
x=32 or x=1
⸫ The curve intersects x-axis at (32,0) and (1,0)

At y-axis, x=0, then
(1) ⇒ y22y3=0
y23y+y3=0
y(y3)+1(y3)=0
(y3)(y+1)=0
x=3 or x=1
⸫ The curve intersects y-axis at (0,3) and (0,1)


Post a Comment

Previous Post Next Post