(1) 3x−2y=2, 9x2+4y2=2
Solution:
Let, 3x−2y=2⇒x=2+2y3 ...(1)
and 9x2+4y2=2 ...(2)
⇒ 9[2+2y3]2+4y2=2 [using (1)]
⇒ 9[4+4y2+8y9]+4y2=2
⇒ 4+4y2+8y+4y2=2
⇒ 8y2+8y+2=0
⇒ 4y2+4y+1=0
⇒ (2y+1)2=0
⇒ y=−12 or −12
When y=−12
(1)⇒ x=2+2(−12)3=2−13=13
Since both the value of y are equal, the required solutions are (13,−12) and (13,−12)
(8) x+y+√xy=28, x2+y2+xy=336
Solution:
Let, x+y+√xy=28 ...(1)
and x2+y2+xy=336 ...(2)
⇒ (x+y)2−2xy+xy=336
⇒ (x+y)2−xy=336
⇒ (x+y)2−(√xy)2=336
⇒ (x+y+√xy)(x+y−√xy)=336
⇒ 28(x+y−√xy)=336 [using (1)]
⇒ x+y−√xy=12 ...(3)
(1)+(3) ⇒ x+y+√xy+x+y−√xy=28+12
⇒ 2(x+y)=40
⇒ x+y=20
⇒ x=20−y ...(4)
(2) ⇒ (20−y)2+y2+(20−y)=336 [using (4)]
⇒ 400−40y+y2+y2−y2+20y=336
⇒ y2−16y−4y+64=0
⇒ y(y−16)−4(y−16)=0
⇒ y=4 or 16
When y=4, (4)⇒ x=20−4=16
When y=16, (4)⇒ x=20−16=4
⸫ The required solutions are (4,16) and (16,4)
(10) √xy+√yx=103, x+y=10
Solution:
Let, √xy+√yx=103 ...(1)
and x+y=10 ...(2)
⇒ x=10−y ...(3)
(1)⇒ x+y√xy=103
⇒ 10√xy=103 [using (2)]
⇒ √xy=3
⇒ √(10−y)y=3
⇒ (√10y−y2)2=33
⇒ 10y−y2=9
⇒ y2−10y+9=0
⇒ y2−9y−y+9=0
⇒ y(y−9)−1(y−9)=0
⇒ (y−1)(y−9)=0
⇒ y=1 or 9
When y=1, (3)⇒ x=10−1=9
When y=9, (3)⇒ x=10−9=1
⸫ The required solutions are (4,16) and (16,4)
(12) x+y=p+q, pq+qy=2
Solution:
Let, x+y=p+q ...(1)
⇒ x−p=q−y
⇒ p−x=y−q ...(2)
and pq+qy=2
⇒ pq−1+qy−1=0 ...(3)
⇒ p−xx+q−yy=0
⇒ y−qx+y−qy=0 [using (2)]
⇒ (y−q)(1x−1y)=0
Either y=q
or 1x−1y
⇒ 1x=1y
⇒ x=y
When y=q , (1)⇒ x+q=p+q⇒x=p
When y=x , (1)⇒ x+x=p+q⇒x=p+q2 ⸫ y=p+q2 [⸪ x=y] ⸫ The required solutions are (p,q) and (p+q2,p+q2)
(14) ax+by=2, a2x2+b2y2=2
Solution:
Let, ax+by=2 ...(1)
and a2x2+b2y2=2
⇒ (ax+by)2−2abxy=2
⇒ (2)2−2abxy=2 [using (1)]
⇒ 2=2abxy
⇒ abxy=1
⇒ by=xa ...(2)
(1)⇒ ax+xa=2 [using (2)]
⇒ a2+x2ax=2
⇒ a2+x2=2ax
⇒ a2+x2−2ax=0
⇒ (x−a)2=0
⇒ (x−a)(x−a)=0
⇒ x=a or a
When x=a , (2)⇒ by=aa⇒by=1⇒y=b
Since both the value of x are equal, the required solutions are (a,b) and (a,b)
(16) 8.2xy=4y, 27.9x.3xy=1
Solution:
Let, 8.2xy=4y
⇒ 23.2xy=(22)y
⇒ 23+xy=22y
⇒ 3+xy=2y
⇒ xy=2y−3 ...(1)
and 27.9x.3xy=1
⇒ 33.(32x.3xy=1
⇒ 33+2x+xy=30
⇒ 3+2x+xy=0
⇒ 3+2x+2y−3=0 [using (1)]
⇒ 2(x+y)=0
⇒ x=−y ...(2)
(1)⇒ (−y)y=2y−3
⇒ −y2−2y+3=0
⇒ y2+2y−3=0
⇒ y2+3y−y−3=0
⇒ y(y+3)−1(y+3)=0
⇒ (y+3)(y−1)=0
⇒ y=−3 or 1
When y=−3 , (2)⇒ x=−(−3)⇒x=3
When y=1 , (2)⇒ x=−(1)⇒x=−1
⸫ The required solutions are (−1,3) and 1,−3)
20. Find the coordinates of the points at which x-axis and y-axis intersect the curves represented by the following equations:
(i) 2x2−3xy+y2+x−2y−3=0
Solution:
2x2−3xy+y2+x−2y−3=0 ...(1)
At x-axis, y=0, then
(1) ⇒ 2x2+x−3=0
⇒ 2x2+3x−2x−3=0
⇒ x(2x+3)−1(2x+3)=0
⇒ (2x+3)(x−1)=0
⇒ x=−32 or x=1
⸫ The curve intersects x-axis at (−32,0) and (1,0)
At y-axis, x=0, then
(1) ⇒ y2−2y−3=0
⇒ y2−3y+y−3=0
⇒ y(y−3)+1(y−3)=0
⇒ (y−3)(y+1)=0
⇒ x=3 or x=−1
⸫ The curve intersects y-axis at (0,3) and (0,−1)
Post a Comment