Processing math: 100%

Exercise 3.6 | Class 10 | Mathematics | Pair of Linear Equations in Two Variables

Exercise 3.6 | Mathematics | Class 10 1. Solve the following pairs of linear equations by reducing them to a pair of linear equations:
(i)  12x+13y=2,  13x+12y=136
Solution:
 12x+13y=2 ...(1)
and  13x+12y=136 ...(2)

Let  1x=a and  1y=b
(1) ⇒  a2+b3=2
 6.a2+6.b3=2×6
 3a+2b12=0 ...(3)

(2) ⇒  a3+b2=136
 6a2+6b3=136×6
 2a+3b13=0 ...(4)

On cross-multiplying (3) and (4), we get-
 a(2)(13)(3)(12)=b(12)(2)(13)(3)=1(3)(3)(2)(2)
 a26+36=b24+39=194
 a10=b15=15

Now,  a10=15a=2
Again,  b15=15b=3

 a=1x=2x=12
and  b=1y=3y=13


(ii)  2x+3y=2,  4x9y=1
Solution:
 2x+3y=2 ...(1)
and  4x9y=1 ...(2)

Let  1x=a and  1y=b
(1) ⇒  2a+3b2=0 ...(3)
(2) ⇒  4a9b+1=0...(4)

On cross-multiplying (3) and (4), we get-
 a3(1)(9)(2)=b(2)(4)1(2)=12(9)4(3)
 a318=b82=11812
 a15=b10=130

Now,  a15=130a=12
Again,  b10=130b=13

 a=1x=12x=22=4
and  b=1y=13y=32=9



(iii)  4x+3y=14,  3x4y=23
Solution:
 4x+3y=14 ...(1)
and  3x4y=23 ...(2)

Let  1x=a
(1) ⇒  4a+3y14=0...(3)
(2) ⇒  3a4y23=0 ...(4)

On cross-multiplying (3) and (4), we get-
 a3(23)(4)(14)=y(14)(3)(23)(4)=14(4)3(3)
 a6956=y42+92=1169
 a125=y50=125

Now,  a125=125a=5
Again,  y50=125y=2

 a=1x=5x=15
and  y=2



(iv)  5x1+1y2=2,  6x13y2=1
Solution:
 5x1+1y2=2 ...(1)
and  6x13y2=1 ...(2)

Let  1x1=a and  1y2=b
(1) ⇒  5a+b2=0 ...(3)
(2) ⇒  6a3b1=0 ...(4)

On cross-multiplying (3) and (4), we get-
 a2(1)(3)(2)=b(2)(6)(1)(5)=15(3)6(1)
 a16=b12+5=1156
 a7=b7=121

Now,  a7=121a=13
Again,  b7=121b=13

 x1=1a=3x=3+1=4
and  y2=1b=3y=3+2=5


(v)  7x2yxy=5,  8x+7yxy=15
Solution:
 7x2yxy=5 7xxy2yxy=5
 7y2x=5 ...(1)
and  8x+7yxy=15 8xxy+7yxy=15
 8y+7x=15 ...(2)

Let  1y=a and  1x=b
(1) ⇒  7a2b5=0 ...(3)
(2) ⇒  8a+7b15=0 ...(4)

On cross-multiplying (3) and (4), we get-
 a(2)(15)(7)(5)=b(5)(8)(15)(7)=1(7)(7)(8)(2)
 a30+35=b40+105=149+16
 a65=b65=165
Now,  a65=165a=1

Again,  b65=165b=1

 a=1y=1y=1
and  b=1x=1x=1



(vi)  6x+3y=6xy
 2x+4y=5xy
Solution:
 6x+3y=6xy 6x+3yxy=6
 6xxy+3yxy=6 6y+3x=6 ...(1)
and  2x+4y=5xy 2x+4yxy=5
 2xxy+4yxy=5 2y+4x=5 ...(2)

Let  1y=a and  1x=b
(1) ⇒  6a+3b6=0 ...(3)
(2) ⇒  2a+4b5=0 ...(4)

On cross-multiplying (3) and (4), we get-
 a(3)(5)(4)(6)=b(6)(2)(5)(6)=1(6)(4)(2)(3)
 a15+24=b12+30=1246
 a9=b18=118

Now,  a9=118a=12
Again,  b18=118b=1

 y=1a=12y=2
and  x=1b=11x=1



(vii)  10x+y+2xy=4,  15x+y5xy=2
Solution:
 10x+y+2xy=4 ...(1)
and  15x+y5xy=2 ...(2)

Let  1x+y=a and  1xy=b
(1) ⇒  10a+2b4=0 ...(3)
(2) ⇒  15a5b+2=0 ...(4)

On cross-multiplying (3) and (4), we get-
 a2(2)(5)(4)=b(4)(15)(2)(10)=110(5)15(2)
 a420=b6020=15030
 a16=b80=180

Now,  a16=180a=15
Again,  b80=180b=1
 a=1x+y=15x+y=5x=5y ...(5)
 b=1xy=1xy=1x=y+1 ...(6)

Comparing (5)&(6), we get,
 5y=y+12y=51y=2 ...(7)
(6)⇒  x=2+1=3



(viii)  13x+y+13xy=34,  12(3x+y)12(3xy)=18
Solution:
 13x+y+13xy=34 ...(1)
 12(3x+y)12(3xy)=18 ...(2)

Let  13x+y=a and  13xy=b
(1) ⇒  a+b=344a+4b=3 ...(3)
(2) ⇒  a2b2=182a2b=12
 4b4a=1 ...(4)

(3)+(4)⇒  4a+4b+4a4b=31
 8a=2a=14 ...(5)
Now, (3)⇒  4(14)+4b=3 [using (5)]
 1+4b=3b=314b=12 ...(6)

Now,  13x+y=143x+y=4 ...(7)
 13xy=123xy=2 ...(8)

Again (7)+(8)⇒  3x+y+3xy=4+2
 6x=6x=1 ...(9)
(8)⇒  y=3(1)2 [using (9)]
 y=32y=1



2. Formulate the following problems as a pair of equations, and hence find their solutions:
(i) Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.
Solution:

Let the speed of Ritu be  x km/h and that of the current be  y km/h
For downstream, speed =  (x+y) km/h
For upstream, speed =  (xy) km/h
A/q,  x+y=202x+y=10 …(1)
Again,  xy=42xy=2 …(2)
Now, (1)+(2) ⇒  x+y+xy=10+2
 2x=12y=6 ...(3)
Now, (2)⇒  x=2+6 [using (3)]
 x=8
⸫ The required speed of Ritu is 8 km/h and that of the current is 6 km/h.


(ii) 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.
Solution:

Let the time taken by 1 woman to finish the work be  x days and that of by 1 man be  y days.
work done by 1 woman in 1 day =  1x
work done by 1 man in 1 day =  1y
A/q,  4(2x+5y)=12x+5y=14 …(1)
Again  3(3x+6y)=13x+6y=13 …(2)

Let,  1x=a and  1y=b
Now, (1) ⇒  2a+5b=148a+20b=1 …(3)
(2) ⇒  3a+6b=139a+18b=1 …(4)
Now,
(3)×9-(4)×8 ⇒
 72a+180b(72a+144b)=98
 72a+180b72a144b=1
 180b144b=1
 b=136
(4)⇒  9a+18(136)=1
 9a+12=1
 9a=112
 9a=12
 a=118
 1x=118 x=18
and  1y=136 y=36
⸫ The time taken by 1 woman to finish the work is 18 days and that of by 1 man is 36 days.



(iii) Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.
Solution:

Let the speed of the train be  x km/h and that of the bus be  y km/h.
Given, total distance she travels = 300km
A/q,  60x+240y=4
 4(15x+60y)=4
 15x+60y=1(1)
Again  100x+200y=4+1060
 100x+200y=256
 600x+1200y=25
 25(24x+48y)=25
 24x+48y=1 …(2)

Let,  1x=a and  1y=b
Now, (1) ⇒  15a+60b=1 …(3)
(2) ⇒  24a+48b=1 …(4)
Now,
(3)×8-(4)×5 ⇒
 120a+480b(120a+240b)=85
 120a+480b120a240b=3
 480b240b=3
 b=3240=180
(3)⇒  15a+60(180)=1
 15a+34=1
 15a=134
 a=14×15
 a=160
Now,  1x=160x=60 and  1y=180y=80
⸫ The speed of the train is 60 km/h and that of the bus is 80 km/h.

Post a Comment

Previous Post Next Post